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PREFACE

The past few years have seen a rapid development in the
mathematical formulation and testing of behavioral science
theory, The problem has been attacked from many different
standpoints by persons widely scattered both geographically
and in field of specialization. In an effort to coordinate some of
this activity the University of Michigan made a proposal to the
Ford Foundation to hold an eight week seminar on The Design of
Experiments in Decision Processes which would have as parttcz—
pants a small group of mathematicians, statisticians, psychnlo<
gists, economists, and philosophers. The proposal was approved
and the seminar was held in the summer of 1952 in Sahta)Monica,
California. This location was chosen because of the €ommon in-
terest of the RAND Corporation in the problems)éfithe seminar,
and the seminar benefited considerably from participation of
RAND employees and consultants as well ag’from the services
of the RAND business office. \

In addition to the participants who were ‘supported by the Ford
Grant and those loaned by RAND, seyeril regular participants
were supported by the Office of Naval ‘Research (through con-
tracts with the University cﬁnﬂddg lmr The TaidVersity of Minne-
sota, and Princeton University} and stili others by the Cowles
Commission. There were glse frequent visitors from the Uni-
versity of California at Kos Angeles and from others in the Los
Angeles area. X\

The results of thé seminar included a great deal of stimula-
tion of empiricalf€search and of further theory construction,

It was decided A0.publish a volume on the proceedings of the
seminar allgwihg about a year for the completion of some of the
research greWing out of it. The editors have also ineluded some
addltlonai papers which are closely related to the purposes of
the‘ 'gemmar.

The authors of the volume do not expect that it will be a
definitive work, bui rather regard it as a vehicle for raising a
number of basic questions and perhaps also providing some
guideposts towards answers to some of these questions. Ac-
cordingly, an informal and relaiively speedy method of printing
seemed suitable. Since the method of printing did not permit
proof reading hy the authors, and also in the interests of speed,
the authors gave permission to the editors to do all of the proof
reading and to make such minor technical changes {e.g. in foot-

v



vi DECISION PROCESSES

notes, references, styles of formulas) as might render the total
presentation more uniform and understandable. Much that might
have been standardized has been left intact in the interest of
presenting each author pretty well in his own manner. Never-
theless, there have also been many minor changes; consequently
any error encountered in the final text may well be of the edi-
tors' making. In any event, all such errors in detail are to he
charged to the editors.

A list of regular participants and the titles of the papers N
given at the formal sessions of the seminar are given as Apx
pendices A and B, ¢\

The title "Decision Processes' does not imply that{the ’
papers are limited to the branch of statistics beari,ng.‘that name.
The individual papers range in character from puraé mathe-
matics {o experiments in group dynamics, but,all‘are directed
at the application of mathematics to behavieraltciences in gen-
eral and at decision processes in particulary® The range and
interrelationship of these papers are d'SQ,hséed in the introduc-
tory chapter. It is the hope of the edifors that mathematicians
and behavioral scientists will find some of the papers of interest

to them and that a few will find them all of interest.

The editors’ task would hayewbeen impossible without the help

of many referees who inc uded seminar participants, authors,
and also the foliowing persofis: Raoul Bott, A. H. Copeland, Sr.,
L 8. Copi, D. A, Darlimng'z‘ Ward Edwards, J. R, P, French,
Lawrenm_e Klein, B. G, Marquis, John McCarthy, T. M, Newcomb,
G. Y. Rainich and A\'W. Tucker. The editors also wish to cx.

press their apprepiation to Wiley and Sons and to the composi-
tors Edwards Brothers for th

eir fi ion i aki
of this bools Ine cooperation in the making
£\
’§“ R. M. Thrall, C. H, Coombs, R. L. Davis

&
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CHAPTER 1

INTRODUCTION TO “DECISION PROCESSES”

by
Robert L. Davis* .
UNIVERSITY OF MICEIGAN R\

For over two thousand years the chief preoccupati’on with de-
cision problems concerned whether or not a givefi'gction or de-
cision would be good, right, or otherwise well calculated to
achieve some desired effect. Philosopherszattén presented these
problems in terms of a dilemma. The dedigion-maker faced a
known situation and if there were morénthdan two alternative
courses of action available to him, t’h,e'se' usually were at best a
class of actions which differed essentially in but one component
{thus permitting him o detiite N HebEe v ongdan”).

Perhaps even more of a restriction than that on aliernative
courses of action is the implicit assumption in these early for-
mulations that decisiong“%kre to be made on the basis of one
known situation. To bQ\s'ilre, reasonable thinkers must always
have allowed in some loose gualitative way for information whose
accuracy was 0n}~y" probable; but the device of making separate
analyses for each of the relevant potential “states of nature”
would have .bg& bootless before the invention of the calculus of
propabili N\t is the concept of mathematical expectation that
lends this device its appeal and power.

AdgDy awaiting analysis was the guestion of how to say pre-
c%“:‘qu what “the desired effect” was to mean; in fact there are

*The editors delegated to this author the task of writing a
chapter designed to serve as introduction and o some extent as
amalgam for the book and the kinds of ideas it deals with. While
he is responsible for selection and organization of the material
to accomptish this, as well as for the writing, many of the ideas
here are the outgrowth of numerous editorial conferences of the
past year. In particular, the word “we” used in discussing mat-
ters of opinion refers to all three editors.



2 DECISION PROCESSES

some who say it is still waiting. But at least today we have
formally well developed thecries of preference and utility; niest
men work within this framework and those who question it svem
usually to de sc concerning the interpretation to be given fur the
abstract system,

These are the main ingredients of the change that has taken
place over the past two millenia since rational philosophy first
attacked decision problems. They were not all put together at
once. Whether a systematic probability calculus began with O\
Fermat and Pascal, as hitherto generally supposed, or acrtu\a]ly
with Cardano, the fact is that the science of statistics h;i_’.s%*c}iiefly
grown up within the present century. Again, Daniel Bernoullt
used a utility concept more than 200 years ago to agalyze the St.
Petersburg paradox; but whether we look to him gpryto ‘the line
of 19th Century economists ineluding Bentham,~G6’ssen, Jevons,
Edgeworth and culminating in Pareto, we dovae¥find a rigorous
formulation of utility theory until the past guarter-century.
Finally, it was only after the late war t at}he work of von
Neumann in game theory and of Wald\n)$tatistical decision
theory came to the attention of any wile class of mathe maticians,
philosophers and scientists, and}éi:l to a basic reorientation con-
cerning decision problems. 4

Thus Whak owd imagl ibabl ¥ia'giodern look in decision theory is
somewhat less than ten year® old. It Is just in the past two years,
in fact, that we have begiin getting books - ranging from technical
X and popularizations - explicitly
rocesses. Now such of these books as we
different from this volume in at least two

respects: (1) théy present what is in S0me sense a “finished”
part of the thegry, and (2)

; wWhile this theory is
\ everal of our authors, much of the vol-
ume.dies quite outside its purview). To account for these differ-
®0CEs requires another brief historical digression,
.‘ ;t is probably clear that if anyone announces that he has a de-
0151.01"1 theory which either “ explains” how people actually make
decisions (in the way any scientific theory “explaing” its subject

topic k,r?t\'wﬁ as “statistical decision theory”
basicte the approach of s

, to philosophers, and to mathematicj
the social scientists is clear:

. Someone offers to -
thing ahout their own field. W oy Lem some

hether the Philosopher isinterested
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hecause of the proposedremoval from his own realm of one more
hedy of hitherto purely speculative material, or rather because
of his interest in methodology and scientific principles, decision
processes attract serious philosophical attention. Mathemati-
cians taking to these matters oiten conient themselves with
pointing out that the source of much interesting new mathematics
lies in early development of deductive thecries designed for ap-
plication to the real world.

Since the fall of 1850 a seminar on the application of mathe-{\
matics to social science has met regularly at the University of
Michigan under the sponsorship of the Departments of Econpmics,
Mathematics, Philosophy, Psychology, and Sociology. Majhemat-
ical ideas have sometimes been explored for their possi'ble ap-
plication in social science, and theoretical systemg of the
social sciences have been studied for their possible formulation
mathematically. It became apparent in the first two years of its
operation that much of the material most interesting to the semi-
nar dealt with decision processes. How th{’s\ed to the summer
project at Santa Monica in 1952 is detad}ed in the preface. The
important thing here is the variety of the personnel at this sum-
mer conference, and of their intere§ts! Some were concerned
with more or less the whole problem, some with aspects of it
which only the initiate colld YeSPravtie ¥e Pefaited to decision
processes. It is this variety, together with the fact that none of
these participants was inigrested in mere reformulation of stand-
ard parts of the theor (udless for the purpose of setting up a
new attack), that acgountis for the differences between this vol-
ume and other bogks-Seemingly devoted to the same subject.

Certain merits*and shortcomings of our volume are almost
inevitable congequences of these facts. It would be unrealistic
to expect a\'cbﬁerent and unified attack on decision theory from
such a group at the present stage. With authors of varied back-
groun,czfa’nd habits of exposition, we get a total output which must
sgaesrjl..uneven in style, which in dealing with such different prob-
1eme also does so at markedly different depths of penetration,
and in which the individual authors are not noticeably in agree-
ment on some of the fundamental guestions in the whole theory
(such as the nature of “utility” and “subjective probability”, for
instance). On the other hand, this variety is necessary to a
presentation of any reasonable sample of the current activity in
decision problems. Thus, although we cannot even claim topre-
sent here all of the kinds of approach to decision processes
which have been developed to date {and no doubt the simplest and
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most effective ones still await development), we can = v othat to
the best of our knowledge this book is representative o] the lat-
est work in our subject in all the disciplines concerned.

We could start & catalogue of the diversified viewpoinis rep-
resented here by recognizing the distinction between tivise whose
interests were primarily formal and theoretical aned theese with
4 more experimental orientation. It would be incoriect o say
that more than one or two of our authors are primarily vxpepi-
mentalists, but several others among the social scientisrs atl
least matched their interest in theory with a record ot feneri-
mental training and experience. The mathematicinns andPhilos-
ophers, on the other hand, had by profession been preyiously
concerned with purely formal theories, The posjifionof Lhe
economists in this regard may seem anomaloug {tlassically,
they have worked with purely formal theory,Mouhded on intro-
spection, although the subject they studied Was an empirical one
of great practical importance in human irs.

One result of thege differences wa:s’the division between
those most interested in working oyt the logical consequences of
& theory or a set of axioms, and thdse most interested in finding

out how people acted. There iscaytelated and somewhat subtler

distinction which, as often g 48 recognized and properly de-

scuring communication and under-

}s in some sense principally descriptive
which is solely normative. The classical
the problems of decision, for instance, was
€ activity of the “rationa)] man”. Thege
ed in what is now calleq statistical deci-
at many of our participants in the Santa

or predictive and hé\f
economic approach

phrased in terigs. 8¢ th
0tions wereMormaliz
sion theory)and 5 gre
Monic c@n‘_ference we

n tc observed behavior.
rational man” seem unfortunate.
! Sts to think in these terms actu-
ally intended to set forth what a
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sense that it gives instructions according to which a man will be
able to maximize his expected payoff in such a game, assuming
he can find the sclution. But this does not say anyone should
use this theory in playing an actual game: it may be that he can
more easily secure this maximum expected payoff in some other
way, or it may be that he is an iconoclast who sees no sufficient
connection between mathematical expectation and the outeome of
any play of the game to justify the procedure.

Game theory illustrates another source of confusion in interz Q)
disciplinary discussions. For von Neumann and Morgensterna
evidently intended not only a normative interpretation for tHé*Lf’
theory, but also that it provide foundations for a new analys\is of
the empirical processes of economic exchange. Now discission
of any theory which like this is intended to have bolif hormative
and empirical applications must proceed in termg~of careful
discrimination as to what aspect of the theory I8 goncerned.
Thus criticism of empirical applications of theory must be
set apart from strictures on its normative dmplications. And of
course both types of argument should be distinguished from any
attack on the abstract theory. Perhaps\because these distinc-
tions are so obvious, they are not alwhys formulated explicitiy
in expert discussion; even with experts this can lead to argument
at cross-purposes. www dBrdulibrary org.in

The breakdown between gmpii-ical and formal approaches is
helpful in our organizatign)&f only part of the book: the fourth
part can he said to coni'\st of experimentally oriented papers,
although one is by ajstatistician and another by four mathemati-
cians, The second 'bai't leans a liitle in this direction too.

The distinctiémbetween the normative and descriptive aspects
of the theorigg }h"ey present affords even less help in classifying
the papers%pe‘t:ause g0 many - as in the exampie of game theory -
are clearly intended to have some interpretation in each sense.
Chapters TII through VI and possible Chapter XII might be sup-
posedit be most nearly concerned with the normative aspects
of the topics they discuss.

Not feeling either of these distinctions to provide a sound
basis for division of our book into parts, we nevertheless found
a more or less natural division in terms of subject matter. Even
this partitioning of the contents is in some degree artificial; we
will now try to point to some of the interconnections and compari-
sans bhetween various papers.

First, as to Chapter II. The genesis of this paper is described
on its first page. These ideas had been fairly well shaken to-
gether by the time of the summer meeting of 1952, There they
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were presented early and may have served somewhat the same
semi-introductory function they serve here. Even when you
talk to a very erudite audience you cften find it expedient to
make a brief survey of the foundations of your subject - just o
establish terminoclogical agreement and start people thinking
along your lines. This chapter gives a sort of quasi-fuormal
status {o three terminclogical practices which were perhaps
fairly common among social scientists before, but which are
somewhat different from ordinary scientific and mathematical
usage. Thus the “mathematical model” - quickly shortened in, ™
use to “model” - here seems somewhat different from what, tie
typical mathematician or logician would expect. .\' )
Any system may be a “model”. It may, for instance \in some
remarkable case, be only a model for itself. In gengral, the
same system may provide a model for many othef &ystems in
being a realization of each either under “ interprét;ition” or
under “abstraction”. Thus, for example, a mathematician might
construct a system of colored fluids and piQe’s and valves as a
model for a particular kind of equation }Q the abstract mathe-
matical theory called hydrodynamicss ut the same system of
liquids and pipes - if fortunately coneéived - might serve an
engineer aSWmO\gﬁlbf%Elt e flo gé}}r;?river network. In applica-
tions to sociaf Sciente Ymo ellJs usually used for the more

abstract system, in contradig:t’in]:tion to common mathematical

usage. Again, the word is\so widely used that it has now be-

come customary to use it even when there is no abstraction or

interpretation at isiltt‘.. 'This has the (rather uneconomical} ef-

fect of making it praetically synonomous with “abstract system”.
T.hus “mathematical model” here means simply “formal de-
fiuctwe system’{;’a mathematical model together with a given
interpretatjai\rof the model in the “real world” constitutes a
theory” swhile “real world” itself is a term intended to denote
what sp@al scientists mean when they talk about the real world,
whgifhgr thaf 18 to be taken as itself another (and probably sim-
'p_}e«xj,'more immediately understandable) linguistic system, or
< E\;m\g}lgtas a set offspeciﬁcations for making measurement’s or
ever your form i i ’
T cha_pfer’ n of epistemology will buy.

t may serve f
. : . , or a great
many kinds of discussion in the social sciences ;



INTRODUCTION T
PART ONE

Two of the five chapters which form the first part of the book
deal explicitly with the standard statistical decision problem.
Two others discuss the application of statistical decision methods
to the problems of group choice, and the last of these chapters
is chiefly concerned with shades of distinction possibly arising
in the probability statements so essential in the statistical deci-
sion analysis. }

Although Leo Goodman's paper “On Methods of AmalgamatiQ \e
is actually concerned with the group choice problem, it serveg
as a good introduction also to the very similar problem of&ind-
ing a statistical decision function. Like the papers of Milnor
and of Radner and Marschak following it, this paper étaxts with
the game viewpoint concerning decision problemsg By “the
game viewpoint” we intend to describe the statément of such
problems in terms of matrices whose entries\are the values of
utility functions: in the decision problem io«n\i’ndividuals, the
entry uj; can be taken to be the utility of the ocutcome consequent
upon selection of the ith alternative cc;mirs’e of action in the event
the “true state of nature” is the jth,6f the possible states. As
Goodman points out this is formally similar to one simple
formulation of the probteni 61’ e O 81 shows how a
number of special means of Obtdining social choice functions
can be subsumed under oune, method of amaigamation, and goes
on to discuss the relatiéns between this method and several
others. L\

Chapters IV and ¥ are alike in many respects. In “Games
Against Nature? {John Milnor looks at three lately proposed
criteria for deeiSion-making together with a modernized version
of the standapd Laplace criterion. As in so many cases in sta-
tistics and\Sther young disciplines, such criteria have usually
been adyvanced in company with proofs that they possess one or
sp\vﬁlié.l intuitively desirable properties not possessed by com-
feting criteria, and the argument left at that, But Milnor shows
that by now we have too much of a good thing: in fact it is im-~
passible for any criterion to possess all of the properties which
have been advanced as intuitively desirable. This discussion
brings the fundamental differences among the four criteria into
sharp focus. Milnor then proposes another and less resirictive
set of “desirable properties” which he proves can be simultane-
ously satisfied, though he camnot construct such a criterion which
is computationally practicable.
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Radner and Marschak, in their “Note on Some Proposed
Decision Criteria”, discuss certain undesirable properiirs uf
two of the four methods Milnor considered factually they use a
slight generalization of the Hurwicz criterion). In the gaing
they construct for this purpose the Hurwicz criterion runs
counter to common sense in dictating that a strategy be chosen
on the basis of but one ochservation where it is obviously reason-
able to make a great many. They illustrate the “dependcuce on
irrelevant alternatives” of Savage’s minimax-regret criteridin
by considering the solutions it prescribes in two casces:one where
the player may use any strategy, and the other wherc hek Tere-
quired to use what they call a * maximum likelihood I"UJ.(;”‘
Though he will actually use a maximum likelihood rule in the
first case also - even when not required to - the minimax-regret
strategies call for different numbers of obseryations in these
two cases, ’

In “Boeial Choice and Strength of Prefg rence”, Coombs re-
turns us to the problem of group choice; (Here he applies his

;neasurement theory and technique £0€ Yordered metric scales”

to derive a social utility function whigh explicitly weights individ-
uals’ strength of prefe

ng Erence. Asgurning a common unit of meas-
ure for ut11‘1qt\¥ %q_mmrggg,t_g;g:mher restrictions, he shows
ht?w o get Such a social utility without having to measure indi-
v1dvfal utilities numerically. “The resulting utility may be de-
scribed as giving the “least disliked” alternative as the social
chmcg. He Comparesihis procedure with several others com-
mon in psychologic\al measurement and also illustrates it with
an experiment. £\
Fina.ll‘yf Viall’s paper on “Alternative Caleuli of Subjective
Probabllxgeé’j’leaves formal structures aside to consider ques-
tions coneerning the variables that figure in formulations of all
these \péqb%ems. Not all of these questions, as he points out
hz:wg ’gnythmg to do with uncertainty; it is clearly desirable ;0
d}&pense \\‘rith those which do not before taking up, as he does in
*ts;?me detsill, the various interpretations which might be given to
Soli W(ifd ‘Pro_bab%hty”. (It i.s_perhaps not entirely clear that the
cal eq objective probability” is quite as simple as histreat-
Inent indicates.) In addition to mathematicai Probability and

P .
Zb]ictlwe" probablh_ty we may distinguish at least two kinds of
gsyt(; olilggcal or subjective probability: the individual’s guess
pmba;vmtyni\;mber best approximates his concept of objective
T an event, and hijg « degree of belief?

Ny ’ 1ef”, These
nz;a:rrelogfb; the sam'e. Anot‘her valuable distinction concerns the

€ event in question. 1Ig it in every relevant aspect
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unique? Or is it a member of a finite - or of an infinite - class
of somehow similar events? Vail classifies choice problems
according to such distinctions and discusses empirical implica-
tions of this classification.

PART TWO

Perhaps some readers will be surprised to see that learning™\
theory plays a sufficient role in our subject to merit a separate
part of this book. First we should make it clear to nop-\ A
psychological readers that within that discipline the topi¢ prdi-
narily identified as “learning theory” has far broaderscope than
might be guessed from merely reading these three phapters.
Much of what psychologists mean by learning th,eo}r:j’ is concerned
with analysis, or at least classification, of whdt are regarded as
determinants of human behavior in learning‘gimations; our three
chapters give this feature of the subject gnly incidental mention.
But a certain class of learning experimg’n s happens to be based
on one of the simplest imaginable decigion situations. And for
handling this kind of data our authors have developed methods
which are at once part of the g}aotle % treatment of decision proc-
esses and also offshoots of 18 a:lfgll 10mA " 184 ning theory of
psychology. N

The Bush-Mosteller Aingar operator model in learning theory
has by now been extag’:{ivély developed and applied to many learn-
ing experiments. In Chapter VIII Bush and Mosteller have col-
laborated with theywathematician G. L. Thompson to give an
extensive discudsion of the formal structure of their model and
some of its mathematical consequences. Psychologists will be
aware fr’o%‘,t‘heir own literature of the many applications this
model has found, while others may feel this introducticn to the
subje\étj'more immediately illuminating for its purely formal
character.

On the surface, their formulation of the problem confronting
the individual in terms of alternatives, outcomes, and the
alternative-outcome pairs called evenis is similar to that of
statistical decisiontheory. A first difference occurs in that the
probabilities associated with these events may depend on the
alternative chosen. And from here on they move in a quite dif-
ferent direction. The fundamental distinction lies in the
sequential nature of the learning experiment. Thus the individu-
al’s tendencies at trial n to choose the various alternatives are
given by the components of a probability vector pin); the authors
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seek to describe the way this vector changes from trial io trial.
They analyze these changes on the basis of three assumptions:
(i) that the change from one trial to the next is given in opecrator
form: Tjkp(n) = p(n+1), where the stochastic operator T i de-
pends solely on the event E;;. which occurred on trial n (% Markov
hypothesis”®); (ii) that each Tjk is linear, and (iii) that the T

satisfy their (rather restrictive) “Combination of Classes”
requirement. ~

Independently of Bush and Mosteller, W. K. Estes had devel®
oped a stochastic theory of learning which in many respgg‘h@
resembled theirs. His Chapter IX deals with a part of-is work
which strikes close to the problems of decision theogy;“it hap-
pens that the mathematical formulation of this speéim case in
hig theory ¢an also be obtained from the Bush- Masteller model.
(However, this paper represents only one pattidular application
of the Estes theory which is in general moré\toncerned with the
determinants of the learning changes than%e Bush-Mosteller.)
Estes reports here one experiment, wh’ich in addition to illus-
trating this feature of his theory is aise interesting for having
led to a great deal of discussion at S4nta Monica and to con-

siderable fu‘xﬂ-!t‘ll}\eﬂr gEpspime SURRE then. (Some of this discus-
Slon appears in Chapter XVilssSee also our remarks on that
chapter.) N\

“On Game- Learning Theory and Some Decision- Making
Experiments,” by M‘. ‘M,\Flood, studies games in which a player
learns to improve Qx‘ri’strategy during the course of a sequence
?f plays. In such.ga es the situation can he regarded as “static”
if the opponentuses a constant mixed strategy throughout the
sequence of p‘lﬁys; allowing him to vary his strategies creates
a more gegral “dynamic” problem., Even though first examina-
tion of \game- learning involyes only the “static model”, Flood

Cessary fo combine game theory with the Bush- Mosteller
learning theory in his anal

jk

PART THREE

Perhaps the most controversi i
al theme § j
was that of utility. Here aga "to distinaion aect

_ in it is helpful to distinguish the dif-
iﬁ;e-nt kinds of ‘ol‘ajections that can be raised. Somegol; these are
£ (1) the utility scheme does not deseribe the actual behavior
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of individuals at all faithfully; (2) the assumption that people
even act as if they were maximizing utility cannot be sustained
by empirical observation; {3) utility cannot even provide a

sound basis for normative theory because, for instance, indi-
viduals could not find any consistent empirical interpretation for
utility statements, or (4) the logical formulation of abstract
utility theory is inconsistent. {(We believe the von Neumann-
Morgenstern axioms constitute a counterexample to the last
statement.)

Utility has always been a vexing issue. A considerable por-
tion of the economic and philosophical disputation of the past k\,
century dealt with various aspects of this concept. To avaid\
confusion with these purely historical matters, we will ;n'eh’tion
several questions concerning the older concepts of utilitywhich
are not at issue in current debate. First, there is so{gonnota-
tion in the kind of utility discussed in this volumeol any “utili-
tarian” or weHare character. On the other hamdjneither do cur
authors insist on any particular hedonistic pSychological inter-
pretation for their utilities (parts of Bohnett’s paper only seem
to be exceptional here). Finally, philosgphers have frequently
contested the validity of utility statements on the grounds that
what was intended was not an “extefiSive magnitude”, or some
such argument; they often I HBEVIA I o¥del® to be used it
had to be measured and that in‘order to be measured it had to be
measured on something at least as strong as a ratio scale {see
Chapter II). The von Neuizﬁann—Morgenstern theory and its ap-
plication in game theon\provide a counterexample here too. It
turns out that utility(8e defined is to be measured on the weaker
interval scale, ahddn the papers by Hausner and Thrall we see
that even this ganbe somewhat weakened without loss of the
practical a%ji«cations.

Discusgions of utility characteristically begin with a preference
ordering.pn a set of objects, prospects of events. Abstracily, the
sta;;tiﬁg' boint is just a chain order defined on some set. Now in
thé face of uncertainty, preference aloue is not sufficient to de-
termine “rational” grounds for choosing one course of action
over another; at the simplest level, for instance, moest people
would prefer $110 to $100, but would prefer an outright gift of
$100 to a 50-50 chance of winning $110. Considerations of this
kind lead in the von Neumann-Morgenstern approach to assuming
initially that the given set of prospects is “closed under” proba-
bility combination, i.e., that it is substantially what Hauser and
Thrall call a mixture space. Now a utility function is classically
a certain kind of real-valued function so defined on the set of
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prospects as to preserve the preference order, Starting - for
such practical reasons as suggested above - with a mixture
space, it is straightforward to get the utility function: just ex-
tend the preference ordering to the whole mixture space in a
way that fits with the probability combinations.

The path taken by Gerard Debreu in the first chapter of Part
Three is more direct. For game theory and statistical purpases
one wants the probability combinations, but they are uhneces-
sary in many economic applications. Debreu asks when we.can
reasonably expect to be able to define a real-valued functign bn
an arbitrary chain ordered set in such a way as to presgr’ve\thc
order. He then shows that if the given set is any sepa}ral)le
connected topeological space in which the topology fitsiwith the
given order in a certain natural way, then the (préference)
ordering can he extended to a utility function. He further shows
that the assumption of connectedness can he g{vén up by addi-
tionally assuming perfect separability (second countability)
The latter statement gives the theorem {0 any subset of
Euclidean space in which the relative té}ology matches the
given ordering in the prescribed wag )

An objection to their utility axigms which von Neumann and
Morgenstern mentioned ii s indhe “Archimedean” nature of the
utility: which‘“ﬁi’é"agg,"?ﬁliﬁi%% ,ét%(;%léﬁat if A, B and C are any
elements of the mixture space ranked in that order under the
preference relation, thefeils a probability p such that B is
equivalent in preference to the combination consisting of “A
with probability p o%€ with probability 1 - p”. This overlooks
the possibility oﬁ. any summum bonum Or summum malum, and
Thrall gives eXamples in which it o
this Archimedean property.

The multidimensiona]
jections'wa's developed in
RAND'Corporation. In th

utifity theory that answers these oh-
several steps, all taking place at the
e fall of 1951 Thrall and Norman

; side_rs mixfure Spaces, and shows that any one can bhe
imbedded in a vector space; then he introdyces order axioms to
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mske the mixture space into a (non-Archimedean) utility space,
which he shows can be imbedded in an “ordered vector space”.
Finally he characterizes these ordered vector spaces.

in the next chapter, Thrall undertakes a discussion of the
wtility axioms both from the mathematical point of view and
from that of empirical interpretation. He constructs examples
io show the abstract desirability of several of the axioms and
possible objections to others. Finally he indicates that the non-
Archimedean utilities can still be used to get the results of Q)
game theory; in particular, they permit computation of solutions.

In Chapter XIV Jacob Marschak carries out an extens,ii;e A
analysis of the activities of “tpams” on the basis of utility theory,
game theory and statistical decision procedures. This analysis,
as he points out, is purely normative: how should’@ateam act to
maximize its gain? A “feam” here is essentially a group for
which there is a known group utility function witich coincides
with the common utility function of all thg.@émbers. By weaken-
ing his requirements on solidarity of intefest he defines first a
«foundation” and then a “coalition”. YThe activities of the team
members include making observations, performing actions,
sending messages and giving orders. He analyzes a number of
cases to determine the b%gﬁmi%%icommunication
(a “rule” states for each member of the tea “what response he
should make to every posgible situation). The relatively diffi-
cult manipulations regm‘}ed even for these simple cases show
for one thing how d&gir’able further development and simplifica-
tion of the theory/would be, while on the other hand they serve to
emphasize how{@iificult would be any analysis at all without the
machinery of{this formalization.

In the Jagt’chapter of this part we have a dissenting note.
Herbert Bohnert brings together some of the objections that are
still gffered to any suggested interpretation of the utility concept.
While many of the former objections are banished in the modest
'a“sﬁertians of von Neumann- Morgenstern utility theory, and
while this theory is certainly anexceptionable from an abstract
viewpoint, Bahnert questions - among other things - whether we
can ever say what kind of a thing “E” is in the sentence “The
utility of E for x at time t equals u utiles”. (“Utile” is a popular
word for a “unit” on the utility scale established by any given
utility function; of course, utility is only invariant up to change
of origin and scale-factor.) Certainly several of Bohnert’s ob-
jections seem serious in considering any empirical interpreta-
tion of utility; especially so since there is a tendency in parler
discussions to answer difficult points by saying “That has to be
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included in the utility function”. This tendency can lead to a
utility function which must, eventually, be defined at any given
time for all possible future states of the universe. Whether
such objections have the same force in many fairly straight-
forward applications discussed by our authors is another
matter.

In any event we are hardly in a position to dispense with the
utility concept. Leaving aside its many specizal applications in
economics, we have suggested above that it is a natural con=
comitant of the analysis of any choice situation involving wris
certainty. There utility was ushered in with the prefereq'cé' )
erdering of a given set of probability combinations. Thie situa-
tion arises in any choice problem under uncertainty;"fm game
theory and in the general statistical decision problgm there is a
set of outcomes on which we assume a preferéyqce’ ordering, and
as before the element of uncertainty introducad utilities. For
any presently conceivable attack on these,pi‘oblems requires the
great simplification of summarizing prefe¥ence in the face of
rigk with one quantity - an expected yalue. It is the utility con-
cept that justifies this simplification™(With the assumptions of
utility theory the two-person zersesSum game is ready for solu-
tion - since we.asarabbpasingAitilities for the two players.

In statistics we have a gameb;gainst nature, but we cannot gen-
erally assume utilities fof\this opponent or that nature is “hos-
tile”. Expected loss is't)xus not yet determined and this leads
to the problems conr\é\i'ning decision criteria discussed in Chap-
ters IVand V.)

Himself recoghizing the value of the utility concept, Bohnert
concludes his'pager with a brief suggestion for a new kind of
definition gf‘kﬁlity; this rests on Carnap’s concept of logical
probabi}Q}g and makes use of the notions of modal logic. It

avoidgdthe feature he found most objectionable in other defini-

tiongi= that the domain of the utility function was undefined or
Aridefinable -

. because this domain is now a set of propositions
in'a language system (we are not certain, though, whether his
replacement of Carnap’s “sentence” by “proposition” is entirely
harmless in this respect). But the language systems to which
C‘arnap has succeeded in extending his notion of logical proba-
blli.ty. are rather limited; and it is our impression that very few
19g1c1ans - let alone statisticians or scientists - are yet con-
vinced of the eventual practicability of Carnap’s program. Since
Bohnert’s definition schema is not sufficiently detailed for us to
be certain of its nature even within a Carnap language, it may
Seem more remote from application than those he crit,i

<

cizes.
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PART FOUR

There i really no sharp line in our book between “experi-
mental” papers and theoretical ones. Chapter IX and possibly
Chapter X might be considered primarily experimental, on the
one hand, while on the other it might be argued that Chapter XVII
was primarily theoretical and belonged either in Part One or
Part Three, or that Chapter XVIII should have followed the Estes
paper in Part Two. Nevertheless, we found it most natural to
place these last two with other more purely experimental papers.

Hoffman, Festinger and Lawrence chose for examinatignfrom
the standpoint of general psychology one of the crucial problems
in the theory of n-person games. The von Neumann:}\eldrgenstern
theory requires that players decide on coalitions sfrictly on the
desire to maximize their returns. That is, in rg(tiohal play of
the three-person game, for instance, each player is willing to
enter into either of the available two-man oalitions, and he de-
cides between these solely on the basis of:hls expected gain
from membership. Thus in the “simplex\llajority game” some
pair of the three players will form 4 eoalition and win the
stakes; but game theory cannot prédict in this case which pair
will do so - nor how they will diyide the profits afterward.

These authors felt that tREEHEEHUEHYEE BB RS analysis
were contrary to everyday eXperience, particularly in the ap-
parent instability of thgséoalitions in the simple majority game.
To them it seemed dikely that other factors besides monetary or
“point” advantages Xvould in this case be decisive in determining
coalitions, and that the coalitions would in fact become predict-
able and relatively stable. In particular they conjectured that
one of thesé)factors would depend on the individual’s concern
over his gélative status among the players, and that a second
would$e the importance he assigned fo the task of succeeding
in tielgame. They support these contentions with the descrip-
.tiﬁigl\' of a carefully designed and executed experiment.

) It would be misleading, of course, to conclude from this that
the game-theory analysis of the simple majority game is
wrong; the games these authors describe are very different
games, with players’ utility systems quite different from the
symmetric ones of the simple majority game. What might be
maintained, however, is that the kind of utility consideration
they here introduce is at once among those which are very hard
to treat in game theory, and yet of a kind which may naturally be
expected to obtain in most observations of actual behavior. They
have given an example of a gamelike situation which may be bet-
ter treated in the context of general psychology than in the theory
of games.
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“On Decision-Making Under Uncertainty”, by Coombs and
Beardslee, presents at first a very general theory which is 2t
least in part designed both as an empirical descriptive frame-
work and as a normative theory. After laying down their gen-
eral definitions the authors give an intuitive analysis of a num-
ber of important features of their theory on the basis of certain
restrictive assumptions. Here they enlist the reader’s geomet-
rical intuition by an imbedding in Euclidean 3-space. This per-
mits easy visualization of the relations they discuss betwetit N
various experiments, as well as of the designs for new experi-
ments suggested by the theory. In these terms they co.@ﬁaf‘e,
for instance, the assumptions underlying the well known
Mosteller~-Nogee and Preston- Barrata experiment€™\Thus the
former gave a measure of utility on the assumption of a linear
relation between psychological and objective\grobabilities, while
the latter measured psychological probability assuming linearity
between utility and money. Coombs and/Bedrdslee further re-
port a pilot experiment carried out in,ngta Monica which indi-
cated that with increasing “stake” the,subject tended to prefer
those offers involving greatest certainty, even though they were
of reduced utility. A\

In hig secc{r;gy \gc%fg;ggﬁgpﬁ;%égg%mlume Flood examines the
behavior of subjects in “prédiction experiments® of the Estes
type (Chapter IX). Flogd pought an experiment to test the hy-
pothesis that subjectgehavior was “mixed” or “pure” accerding

as the subject belﬁcly‘ed the events being predicted followed a
battern or wereyrandomly determined. Here, “pure” behavior

is characteri;e:d. by the subject’s choice at some point in the se-
quence of tridls of a single best strategy (to which he thereafter
adheres!, and “mixed” behavior occurs when the subject gives
no e_vgfm’e of any intention to settle on one pure strategy. A
s.tat}\O ry stochastic process is one whose Probability distribu-
tions do not change with time, and in general “non-stationarity”

I these experi-

yments it happens to he reasonable to suppose that “non-

stationarity” usually involves the subject’s assuming that the
events being predicted are determined according to some
(eventually guessable) pattern. Flood reports in this paper the
result.s of two pilot experiments which may lend support to his
(gmmmgntly reasonable) hypothesis. (The editors feel that his
dlscfussmn of the remarks of “various game theorists in the
e_tu_d}ence” may be misleading. It is our recollection that in his
1n1t%al report Estes left an impression with the audience that his
subjects had reason to believe the process was random, and we
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further recall that no one failed to preface remarks about
“paiionality” or “proper strategies” with a more or less explicit
assumption about payoff utilities, such as “Ti they wanted to
maximize their scores...”.)

OQur final paper furnishes evidence of the educational compass
of our summer in Santa Monica. Here four pure mathematicians
report on a series of experiments which they themselves devised,
carried out and analyzed. To be sure, these experiments lay
close to the authors’ professional interests; they dealt with Q
gquestions concerning the empirical interpretation of some’f‘l{n-
damental concepts in the theory of n-person games. (M/

The n-person game is analyzed by von Neumann and\,
Morgenstern in the framework of coalitions and sidé~payments
within these coalitions. (This analysis leaves the/fheory inap-
plicable from the very start to most many- pensﬁn parlor games
such as bridge and hearts.) Nothing is said.about how coalitions
are formed, except that the resulting coa}i{io‘n must he among
those prescribed by “solutions”. Whatever the process of their
formation, it seems to admit of no realistic interpretation in
typical economic situations, since, fof large n communication
difficulties would prevent consideration of some (possibly
optimal) coalitions. o

The payoifs ic the playe\;g ﬁ}%béf‘%%"af‘é e8t¥pdnents of vectors.
A “sclution set” is a setOF these vectors with certain {necessarily
rather weak) properti.és\expressed in terms of “dominance”. The
imporiant thing is ’bq}st"there are in ail known non-trivial cases
far too many “solutions”; you cannot even tell from the solution
set what coalitigns should be formed. And if you knew this, you
still could pdt.tell how members of the winning coalition would
split the swag among themselves. Brieily, there are seemingly
always~fo many solutions (though it cannot be proved that there
31‘«‘-’33@ is even one), and these solutions are very “un-solutionlike”

e ¢Blich objections to the original approach of von Neumann and
A Mdrgenstern led to formulation of various new concepts in the
M-person theory. Thus Nash’s analysis of non-cooperative
games and his definition of equilibrium points there do away
with pre-game coalitions and side-payments. Again, the
Shapley value is a function which permits a prospective player
to assign a sort of potential value to each of the “roles” or
“positions” in a game. And Milnor gave upper bounds for the
amounts each player or set of players “ought” to be able to re-
ceive from a game.

Now whether these or similar concepts are actually realized

in empirical plays of n-person {cooperative or non-cooperative}
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games is a gquestion that must be answered hefore we can dis-
cuss the merits of game theory as a mathematical model for
the economic theory of exchange. For the expected generaliza-
tion from games of strategy to economic problems will proceed
by means of the theory of general n-person games. This is one
side to the desirability of experiment in n-person games. The
other is that observing how people actually play games may well
suggest new concepts deserving of formalization in the theory,
These four authors discuss a number of experiments, principa}ly
in light of the question: How may such experiments be shdgpened
for either one of these two purposes? PPN N
Some readers might appreciate comment on the varying
degrees of mathematical difficulty of our papers. “T}ié only
papers, we ieel, that require any real mathematital sophistica-
tion for understanding the proofs are those of\Milnor (IV) and
Hausner (XII). On the other hand, papers which contain suffi-
cient mathematical detail to demand fairly\\ciose reading include:
Radner and Marschak (V), Bush—Mostel‘ie’r’-Thompson (VIIT},
Flood (X), Debreu (XI} and Marschalk\(XTV). Finally, although
the experiments and results of thesfgtr-authored paper on ex-
perimental n-person games arg{eit’her well explained or self-
explanatory, & fainlnosledgecof igime theory may be prereq-

uisite to a complete grasp, 'of the purposes and possible
significance of the experients.



CHAPTER II

SOME VIEWS ON MATHEMATICAL
MODELS AND MEASUREMENT THEORY"

by
C. H. Coombs, H. Raiffa, R. M. Thrall A
UNIVERSITY OF MICHIGAN, COLUMBIA UNIVERSITY (%,
AND UNIVERSITY OF MICHIGAN PR\

We shall undertake first to review the role of tHematical
models in a science and then briefly discuse theNniodels used in
classical measurement theory, This will be folldowed by a gen-
eralization of measurement models. Ilustrations will be intro-

duced when needed to clarify the concepts}di’écussed.

1. THE ROLE OF W&II(}A‘IEEODE L8

We shall use the terms '1pf1'3fsica1 abjects," "real world,™ and
"object system" synonymdﬁsly to signify that which the empirical
scientist seeks to st 3(:~ihc1uding such objects as opinions or
psychological reactions. The scope and content of a domain is
selected by the seientist with the intent of discovering laws which
govern it or making predictions about it, or controlling or at
legst influe c:»hg“ it.

There ‘afe potentially at least as many ways of dividing up the
world int%bject systems as there are scientists to undertake
the ﬁ%‘vk’." Just as there is this potential variety of object systems,
“Tis paper is an outgrowth of a number of sessions on measure-
ment theory in an interdisciplinary seminar on the application of
mathematics to the social sciences held during the academic year
1951-1952 by the authors. While the iniluences of the separate
authors are sometimes distinguishable, the paper is a truly
joint product. The authors are listed alphabetically. This re-
search was carried out under ONR Contract Nonr 374 (00) NR
041-011 and a Ford Foundation Behavioral Studies grant. A
version of this paper has appeared in Psychological Review 61
(1954), 132-144,

19
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80 also is there a potential variety of mathematical syutens,
Let us describe the nature of 4 mathematical system, {(Fura
more detailed discussion of the nature of mathcmuti(';q Systems,
see [8], [12], and [13}.) A mathematical system consists of a
set of assertions from which consequences are derived 13_‘,: mathe-
matical (logical) argument. The assertions are relerred lo as
the axioms or postulates of a mathematical system. They always
contain one or more primitive terms which are undefined und
have no meaning in the mathematical system. The axioms&hithe
mathematical system will usually consist of statementg ahut the
existence of a set of elements, relations on the elemernt s prop-
erties of the relations, operations on the elements, aud ‘the
properties of the operations. Particular mathematigal systerps
differ in the particular postulates which form tHeix bases. It is
evident then that the variety of mathematicalﬂs}\f?tems is limited
only by the ability of man tg construct them)

Our view of the role that mathematicalthodels play in a sci-

ence is illustrated in Figure 1. With sbéafe segment of the real
world as his starting point, the sciexf]

we shall cajl abstraction (A), maps.Bis object system intc one of
the mathematica) systems or

madels. By mathematical argu-
ment (M) certain mat matieabeonclusions are arrived at as
hecessary f‘iﬁé"ﬁéﬁﬁa&}:}r%sléﬁénégs of the postulates of the system.
The mathematical cop,

; Clusions are then converted into physical
conclusions hy g ProceSs we shall caj) interpretation (1),

Let us start With @ Specific rea) world situation [RW)1 and by
brocess A mayp it

9 2 mathematical system (MS){. We can
ook at (MS)1 88\ model of (RW)I. Looked at in reverse, we
can start With consideration of (MS)y and then (RW)y can be
Viewed s aumodel of (M8}t and the Process of going from (MS)y

O
\%..
'k]’j"; real .,_m_at;erratical-—‘

~L worlg ———abstraction (A) __ [ i

\ \ Bystem J

experiment |

) mathematical

* argument (M)
physical _ . ioal }
conclusiong "E———lnterpretation {n ———~J mathematical !
\f L_conclusions X
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to (RW)y we call "realization.”” Thus, "realization™ is the con-
verse of "abstraction." Now, given (MS)y we might be able to
find a real world situation, (RW)s, such that by assigning mean-
ings to the undefined terms of the mathematical system the as-
sertions about "sets of elements," "relations,”™ and "operations™
in (MS)y become identified with objects or concepts about (RW)a.
That is, (RW)y may be another model of (MS)y and the process
of going from (RW)l to (MS); to (RW)g often indicates subtie
analogies between systems such as (RW)p and (RW)y. To the{\
mathematician who often starts with an abstract system the \
model is a concrete analogue of the abstract system. To, t‘hE
social scientist who starts with phenomena in the real world the
model is the analogue in the abstract system.

In establishing a model for a given object systen Oné of the
most difficult tasks is to attempt a division of the'phenomenon
into two parts; namely that part which we absttaet (A) into the
basic assumptions or axioms of the abstract\gystem and that
part which we relegate to the physical coriclusions, and which
we reserve as a check against the intepﬁretations from the ab-
stract system. In a given cbject systém there is no unigue par-
tition of the phenomena and whichy ];iafrtition is made depends on
the creative imagination of the t?lbbu ilder. Indeed, there are
models in the physical an&"olﬁld%i%% 1'scldneeds Tor which there
are no experimentaliy verified or verifiable correlates in the
real world for the undefmed terms, relations, and operations in
the zbstract model. \snmlar gsituation prevails on the abstract
system side, namely, it is often possible in a given abstract sys-
tem to interchange“the roles of certain axioms and thecrems.
Thus, in a gived\System there is no unique method of splitting
the mathema‘tﬁ:al propositions into axioms and theorems. In
going fro the abstract system to the object system we have the
parallebi}\rocesses of realization and interpretation. It is quite
comn{br’r to consider these synonymous; however, we prefer in
thig\discussion to reserve the word "interpretation” for the
Process which maps the mathematical conclusions (rather than
the axioms) into the object system.

Let us summarize briefly up to this point. Beginning with a
segment of the real world, the scientist, by an entirely theoreti-
cal route, has arrived at certain conclusions ahout the real world.
His first step is a process of abstraction from the real world,
then a process of logical argument to an abstract conclusion, then
a return to the real world by a process of interpretation yielding
conclusions with physical meaning. But there is an alternative
route to physical conciusions and this is by way of working with
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the object system itself, Thus, the scientist may begin with the
real world segment in which he is interested and proceed ili-
rectly to physical conclusions by a process of ohservation or
experiment {T).

The path (T) {experimentation) from the real world to e
physical conclusions needs further scrutiny. Usually in theory
construction the scientist embarks on model building alter he
has many facts at his disposal. These facts he partitions info
two parts—one part serves as a springhboard for the abst radton
process (A); the other part serves as a check on the moded hy
making comparisens with these initial facts and the interpreta-
tions (I} stemming from the model, I a specific interpretation
is not at variance with a fact in the initial reservdiry but ar the
same time not corroborated by our a priori notié’ns of the oh-
ject system, then the model perhaps 'H—zi?c—ont'i»h)uted to our
knowledge of the object system, The scienhist next tests this
tentative conclusion by setting up a plaryetf\éxperimental veri-
fication, if this is possible. Often dirgctverification may not
be possible, and corroboration stemsJrom examination of ex-
perimental evidence which supports-elaims of the model quite
igdireg:ﬂ};. tThatt is, motivated biz Interpretations of the model,

€ sclentist sets up an expe;*ftfrlental desigh, obtains observa-
tions by expél"ﬁh‘é?ﬂfﬁ‘ﬁbl?ﬂaﬁ?a?(l&l% statistiial interpretation of
pPhaysical conclusions, and compares the
8\8l the abstract route in order to appraise
thfe model, ‘As suggé\sted by a referee (Frederick Mosteller) of
this paPer,_Lt WOu!d be appropriate to generalize Figure 1 as
shown in Figupe\2. The route A3EIy in Figure 2 is summarized

MY
r— 0 . —— L
experie 4 ) eXperi- r T theo- .
mentyh N\ . Dweatal reat retical A ,
design\ La_bSti:‘:“ ' world  r T T abatrae. — = . y
3 inn (4., i : .
j:., w & o tion {Alj o
O\” T |
7N Seexperi- e .
k3 - . = .
J tmenta- " dichotomization mathu-
Lion (&) " apri af facts mitical
i_ \\‘ P JOII aels ATgumment (K
T tati T —!
statis- ) .o .
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by the route T in Figure 1. If the physical conclusions of the
process AjMIy are at variance wiih the a priori facts or with
conclusions arrived at via A2E12 {and if more confidence is
placed in the experimental route than in the theoretical route)
then the suitability of the model is suspect.

'The task of a science locked at in this way may be seen to be
the task of trying to arrive at the same conclusions about the
real world by two different routes: one is by experiment and the
other by logical argument; these correspond, respectively, to
the left and right sides of Figures 1 and 2, There is no natural
or necessary order in which these routes should be followed.),
The history of science is replete with instances in which phyai-
cal experiments suggested axiom systems to the mathgmhticians
and, thereby, contributed to the development of mathématics., On
the other hand, mathematical systems developed under such
stimulation, in turn, suggested experiments. And there have
been many instances of mathematical systems\developed without
reference to any known reality which subsgqu\ently filled a need
of theoretical scientists. The direction that"mathematics has
taken is in congiderable part due to its Nnteraction with the physi-
cal sciences and the problems arising therein.

I is illuminating here to observesthe way in which the models
of the mathematical theory ‘of prdealiftgrandratitistics fit this
picture. As in any abstract“syétém the mathematical theory of
probability is devoid of \real-world content; and as in any
other mathematical sygtém the axioms of probability specify
interrelationships améng undefined terms. It is common to let
the notion of probability itself be undefined and to attempt to
capture in the axieimatic structure properties of probability
motivated by Fl\(e.,interpretations we have in mind (e.g., gambling
games, physical diffusions processes, etc,). Given an associa-
tion of pr(iabilities to prescribed elementary sets, the axioms
of prohaﬁility dictate how one must associate probabilities with
othep-gets, How we make these preliminary assoclations, pro-
vid'ﬂ}g we have consistency, is not relevant to the purely abstract
system, When we come to apply the probability model we are
confronted with the problem of identiiying real events with ab-
stract sets in the mathematical system and the measurement
problem of associating probabilities to these abstract sets, Ex-
perience has taught us that if we exploit the notion of the relative
frequency of occurrence of real events when making our pre-
liminary associations then the interpretations from the model
have a similar frequency interpretation in the real world, To
be sure, our rules of composition in the formal system were
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devised with this in mind. We assocciate probabilities in one way
rather than in another way in the process (A) so thal when we
generate AMI, our interpretations are in “close' accord with
results of experimentation, T, when T is possible. When T is
not possible we have to rely to a great extent on analouy.

An extremely important problem of statistics can be viewed
as follows: For a priori reasons we may have a well-defined
family of possible probability associations, Each element o\ghis
family, when used in the abstraction process (A}, generates by
AMI a probability measure having a frequency interprgfation
over real events. In addition, we are given a set of pnssible ac-
tions to be taken, Preferences for these actions depend in some
way on the relative "appropriateness™ of differedt, probability
associations in the abstraction process, A. By eonducting an
experiment, T, and noting its outcome we gajh some insight into
the relative "appropriateness™ of the différent probability asso-
ciations and thus base our action accordingly, Variations of this
problem, which invelves the entire QAMi-T process, have been
abstracted sufficiently so that models of mathematical statistics

include counterparts of ail thesg\ingredients within the mathe-
matical system itself, N

In a given mpdel we mayibe confronted with the problem of .
deciding whether the AMI*argument gives results ''close enough'

to the experimental reSults from T. We often can view this prob-
lem involving a cogiplete AMI-T process as the real world phe-
nomenon to whichiye apply the A process sending it into a formal
mathematical statistics system, The statistics system analyzes
step M and Gur interpretation I takes the form of an acceptance
or rejecti@, statement concerning the original theory,
Tbe:p';‘ocess of measurement, corresponding to A in Figure 1,

provides’an excellent illustration of the role of mathematical
'nlnodél + There are many types of observations that can be called
pieasurement.” Perhaps the most cbvious are those made with

4 '\:?ardsticks, thermometers, and other instruments, which result
1m.mediate1y in the assignment of a real number to the object
I_Jemg measured. In other cases, such as the number of correct
ltems on a mental test or the size of a herd of cattle, the result
of measurement is a natural number (positive integer). In still
o_ther cases, such as relative ability of two chess pla
tive desirability of a pair of pictures, or relative ha
substances, the result is a dominance (or preferenc
We might even stretch the concept of measurement

such processes as naming each eleme
nt of some
or the photographic re o

gorization of menta] i

yers, rela-
rdness of two
e) relation.
to include

‘ ass of objects,
presentation of some event, or the cate-
llnesses or occupations,
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The process of measurement may pe described formally as
fellows, Let P ={p1,Dg -+~ } denote a set of physical objects
or events. By a measurement A on P we mean a function which
assigns to each element p of P an element b = A(p) in some
mathematical system B = {bp,+ -} That is, to each element
of P, we associate an element of some abstract system B (the
process A of Figure 1). The system B consists of a set of ele-
ments with some mathematical structure imposed on its ele-
ments. The nature of the set P and the actual mapping into the,
ahstract space B comprises the operation of measurement, The
mathematical structure of the system B belongs to the forx;ﬁal
side of measurement theory. The structure of B 1s digtated by
a set of rules or axioms which states relationships between the
elements of B, However, no connotation can be given to these
elements of B which is not explicitly stated in ilte ‘axioms, i.e.,
their labels are extranecus with respect to consitderations of the
structure of B. A

After making the mapping irom p inQ ‘\B, then one may op-
erate with the image elements in B (always abiding by the
axioms, process M of Figure 1). Phrely mathematical results
obtained in B must then be interpreted back in the real world
(the process I of Figure 1), toenable one to make predictions
or to synthesize data concerfif -Saayhibrary org.in

 the manifestations of\P (as a result of the process T of
Figure 1) are in confliet\with the results of process 1 obtained
from B, then one mu§t-Search for a new cycle AML Suppose
that we have a fandily of abstractions {Aq} from the given situa-
tion P, and suppose that Mg,ly complete the cycle begun with
Ag. Among allyof the available cycles Ay Mgly we seek one,
say AOMOIG,:,\Nhich is "closest” to T according to some cri-
terion, .Some models have a criterion built in to judge closeness
and others of a more deterministic nature require an exact fit.

‘The process T represents the experimental or operational

.p‘a@'t ‘'of model building, the process M repre.ents the formal or
legical aspect. The processes A and I are really the keys to
the model and serve as bridges between experiment and formal
reasoning.

It might be well here to draw clearly the distinction between
a model and a theory. A model is not itself a theory; it is only
an available or possible or potential theory until a segment of
the real world has been mapped into it. Then the model becomes
a theory about the real world. As a theory, it can be accepted or
rejected on the basis of how well it works. Asa model, if can
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only be right or wrong on logical grounds. A muodel mus.t. sa_tisfy
only internal ctiteria; a theory must satisfy external criteria as
well, .

An example of the distinction between models and theories
lies in the domain of measurement. A measurement scale, such
as an ordinal, interval, or ratio scale Is 2 model and needs only
to be internally consistent, As soon as behavior or data are
"measured” by being mapped into one of these scales, then the
model becomes a theory about that data and may be right o\
wrong. Scales of measurement are only a very small po'r't\i‘(m of
the many formai Systems in mathematics which might ;ibh-‘c 45
image spaces or models, but will be discussed here a8 they con-
stitute very simple and immediate examples of thesrale of _
mathematical models, First to be discussed willbe the models

of conventional measurement theory and then ageneralization of
these models will be presented,

N\
II. MATHEMATICAL MODE{;QOF CLASSICAL
MEASUREMENT. PHEORY

The first comprehensive clgééification of the mathematical
models USEdmmﬂUﬁMa{maéﬂrement theory was made by
Stevens [9]. He classified scales of me

generalization in the next section,

The Q@thematical model of measure
nal ifvit.merely coniributes a mappin
anyfurther structure on M

Jected to any 1-1 transfor

ment is said to be nomi-
€ A of P into M, without
o A nominal scale M may be sub-
mation without gain or loss in infor-

An ordinal scale of measure
ral ranking of the Chjects of
tribute., More precisely, the

ment i8 implied if there is a4 natu-
measurement according to some at-
ordinal scale ig appropriate if the

€ partitioned intp classes in such a

ribute in question; b) a
order relation can be made between
(for €xample, class x is more
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than class y): c) there is an element of consistency in these
comparative judgments—namely, if class X is more than
class vy and class y is more _ than class z, then class X is
moreg than class z (that is, the comparative judgment or
order Telation is transitive), For example, the familiar socio-
econcmic classes, upper-upper, lower-upper, upper-middle,
lower-middle, upper-lower, and lower-lower, imply the meas-
urement of socio-economic status on an ordinal scale. The num-
bers 1, 2, 3, 4, 5, 6, or 1, 5, 10, 11, 12, 14, or the letters
A B C D E, F, could designate the six classes without gain
or loss of information. w\\\

The measurement is said to be an interval scale whsén the set
M consists of the real numbers and any linear transformation,
y=ax+b{a #£ 0), on M is permissible. Measurgment on an
interval scale is achieved with a constant unit of measurement
and an arbitrary zero, An example of an interval scale is the
measure of time. That is, "physical events®ican be mapped into
the real numbers and all the operationsoo,f\ai‘ithmetic are per-
missible on the differences between alI)airs of these numbers.

If the set M consists of the real{npmbers subject only to the
transformation group ¥y = ¢X whe’ré ¢ is any non-zero scalar,
the scale is calied a ratio scalel Measurement cn a ratio scale
is achieved with an absolutétaeidbandiRresrsaninunit of measure-
ment. The secalar ¢ signiiié’s that only the unit of measurement
is arbitrary. In a ratig\seale all the operations of arithmetic are
permissible. The ost familiar examples of ratio scales are
observed in physics\in such measurements as length, weight, and
absolute temperature.

A
K7,
I\ A GENERALIZATION OF MEASUREMENT MODELS
&S

',én‘axiomatic basis for certain scales of measurement will be
o~ Rresented in this section, Other scales can be generated by
forming mixtures (or composites) of these, Indeed, some of the
scales listed in the diagram shown in Figure 3 can be regarded
as composites of others,

We will now list defining axioms for each of these systems
and briefly discuss their roles. It is not claimed that this list
is exhaustive; it is presented to illustrate certain possibilities
for significant generalizations of scales used in the classical
theory. The arrangement in the diagram is from top to bottom
in order of increasing strength of axioms; a coanecting line in-
dicates that the lower listed system is a special case of the
higher one.
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Nominal, B

Relation, By

-

o

Antisymmetric, Bg '_Tr'ansitive,_ By
Partial QOrder, By ! N\
i \
| O
Lattice, By Weak Ordex, By
[ >
/ : / ~\
Vector Space, By Simple Order, Bs

\ ‘ K

Mixture Order, B
|I 'z:\
Real Number;s,':}}?

¥
v

Fig. 3. Measg;’ém:ent Scales

By, The NonyiHeradi e A minal scale, B,, may be con-
sidered a mathematical £pstem consisting merely of a set of
elements, We define ith;} index of By to be the number of ele-
ments in By, (Théindéx may be finite or infinite,)

Examples of segments of the real worid that are mapped into

nominal scales are psychiatric classifications, job families, and
disease typegh"

The nomipil scale, By, is the mo
tem of wmi aé'urement. The set
classg8'such that there is a re
between pairs of elements fro

St primitive step in any sys-
of elements is partitioned into
lation of "equality" or equivalence

m the same class. The nominal
~8€ale is fundamental since th

€ process of diserimination is a
\necessary Prerequisite for any mare complex form of measure-
ment,

. In technical language,
a relation R on a set By is a set of ordereq pairs (b, b') of ele-
ments of By, We write bRb' to Indicate that (b, b') is one of the
tion R, and call the get By a relation
recognize that for R to constitute z
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very useful relation, not all possible pairs (b, L'} from Bp can
be included in the relation K.

With some risk of misinterpretation or distortion, these con-
cepts might be illustrated as follows, Consider a set of persons
identified by a nominal scale, B,. Let us now define the relation
R on B, to be "aves.” Thus R consists of the ordered pairs
(a, b) for which, a loves b.

The particular relation used here as an illustration is one
whose mathematical properties are mostly negative, We cannot
conclude from a loves b and b loves c, that a loves ¢, or. O\
that b loves a, or that b does not love a. For example, if John
loves Mary and if Mary loves Peter, it may well be that, fax’)
from loving him, John would like to see Peter transpo;-teﬁ to the
South Pole, I the terminology to be introduced belgwywe would
say that love is not symmetric, is not asymmetrici’and’is not
transitive. A\

Ba, The Antisymmetric Relation Scale.’.@frelation R on a set
B is said to be antisgmmetric if aRb and\ ®Ra together imply
that a is identical with b, An example\is the relation 2 for real
numbers. A statement such as, "Picture a is at least as good
as picture b" illustrates an ant15yihmetric relation on a collec-
tion of pictures, provided thatetiirediteargtoig the collection two
distinct pictures of equal medit, i.e., two pictures about which
the judge is indifferent.

Closely connected tg"ﬂie concept of antisymmetry is that of
asymmetry. A relab‘@n”R on a set B is said to be asymmetric
if aRb implies bR {where bR'a means that b is not in the
relation R to g{.‘ MThe mathematical prototype of asymmeiry is
the relation 34ipr real numbers. Verbal forms for asymmetric
relations jni;~1ude such statements as, "Picture a is better than
picture h}‘" or "Player a beats player b ina game."

Antﬁifsymmetry and asymmetry are seen to be at the root of
giatéjments of comparison. These two classes of relations can

e\ ¥egarded as the most primitive types of order relations. At
tHe opposite pole from these concepts is that of symmetry. A
relation R is said to be symmetric if aRb implies bRa. For
example, the relations "is a sibling of," "is a cousin of," and
vig the same color as' are all symmetric.

I S is an asymmetric relation on a set B, we can obtain
from it an antisymmetric relation R by the definiticn: aRb
means either aSbh or a =b. Conversely, if R is antisymmetric
and we define aSh to mean aRb and a # b, then S is asym-~
metric. It is customary to use the symbols, £, 2 for anti-
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Symmetric relations and to use <, > for the associated asym-
metric relations,

Bg', The Transitive Relation Scale., A relation R Ls suid to
be transitive if aRb and bhc imply aRc. In the phiysical world,
preierence Jjudgments which are not transitive are frequently re-
garded as inconsistent or irrational. However, situations such
as that of three chess players, each of whom can beat one of the
other two, show that transitivity is not a requirement of natire.

The chess player relation is antisymmetric but not Lrunsitive,
An example of a relation that is Symmetric and transifive)is
given by g communication system where each link is\idirection-
al; here aRb is given the meaning “'there exists a“ehain of links
starting with a and ending with b." If the links dre not required
to he bidirectional, the relation is still transitive but is no longer
Symmetric. Note that in this example it is\quite possible to have
aRa, i.e., a chain beginning at a ang ending at a. (This chain
must have at least ope element differeqt‘from .}

The relation "a is the rival of B Isay as suitors of a par-

Heular girl) is symmetric and is almdost transitive. If aRb and
bRe, we can conclude aRe unleggs
gard a as being his own rivales Thi
quently in studtes brag) 4 ¥tictires, we say a relation R is
quasi-transitive if aRb, bRe, and a # ¢ imply aRc, The sibling
relation is also quasi-transitive, Of course, if R is quasi-
transitive we can deffne A new relation S to be the same as R
except that alsg aRb, 'bRa imply

aSa. In some instances S is
just as good g model as R, but in others the extension from R
to § destroys.thé usefulness of the model,
As an example consider the structure matrix 4 = Hag: i of
Some soctefy., Thus we set ajj = 1 if person i hag direét infiu-

ence oppetson j and set ajj = 0 otherwise. One must decide in

accor’gi:ance with the purpose of the investigation whether or not
toset the diagonal element aj; equal to 0 or {o 1, (The relation
"ihas direct influence on 3" i not transitive even if we take
®ach aj; =1, put this exampie neverthelegsg illustrates the kind

of problem involved ip the contrast between transitivity and
quasi-transitivity.)

If the relation aRp meant g "j
status thap' i
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Bz, The Partly Ordered Scale. A relation Z which is re-
flexive, antisymmetric, and transitive is called 2 artial order.
I for some pair a, b, neither of the relations a 2b, b £ a holds,
we say that a and b are incomparable relative to 2. In the case
of a preference relation, incomparability is not the same thing
as indifference. We call a set a poset (partly ordered set), if
there is a partial order relation defined on B.

If 2a2b, we also write b$a; if a2b and a # b, we write
a>b or h<{a. AL
A partial order may be illustrated as follows. Suppose that

on a mental test no two individuals in a group pass exactly\fhe
game items. Now let a =2b symbolize the relation "a pagsed
all the items b did.” Then a >b means that "a passed-all the
items b did and at least one more.”" This poset reflects multi-
dimensionality of the attributes mediating the test performance
and some interesting mathematical problems drike regarding the
partial order as a "product” of simple orders» The result is a
non-metric form of factor analysis with sOme of the same prob-
lems as factor analysis [3]. o\

Next we consider the mental test éxginple modified so as to
allow the possibility that two individuals a and b pass exactly
the same items. Then in the above agtation we have a 2 b and
bZa, butnot b =a. Hence:?‘é’ NG longer Bives & partial order,
However, if we define al b _td*mean a2 b and b 2 a, it is not
hard to show that if we identify individuals with the same iest
performance then 2,is{a) partial order relation. Or, alterna-
tively, we could cané«iﬁer 2 as a partial order relation on the
set of possible te,st: performances. It is customary to make such
identificationsdand speak of a partial order as though it were ac-
tually on thesinitial set rather than on the identified classes or

on the teitﬂ'ixesults.

Another example of a partial order is implicit in the treat-
mentwf the comparative efficiency of mental tests on a “'cost-
utility" basis [1]. "Cost"” is the fraction of potentially success-
%ul people who are eliminated by a test; "utility" is the fraction
of potential failures who are eliminated by the test, If for their
respective cutting scores one test has a higher utility and a
lower cost than another it is a superior test, but if it had a higher
utility and a higher cost the two tests would be incomparable un-
less the relative weight of excluding a potential success to includ-
ing a potential failure were known.

A basic problem in the theory of testing hypotheses in statis-
tical inference is to test a simple hypothesis, Hg ("null hypothe-
sis™), against a single alternative hypothesis, Hiy, by means of
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experimental data. A test, T, associates to cuch <'rx;_1(:rim.untal
outcome the decision to accept Hy, or to accept Hy thut net
both!). Each test T is appraised by a pair of numbers, n:ml[.:cly,
the probability of accepting Hy if Hg is truc, [')T(H]__[ HU%.. r‘md
probability of accepting H, if Hy is true, Pp{H, |Hy}. C:rl'x-cn
two tests, T' and T", then T' is said to be as good us T

(T" 2 T if and only if

Prr(Hy |Ho)
P (Ho |Hy)

pT"{HIII'I(}) \

Pp(H) [Hy) R\

[I7ANEN[aN

7 \
The relation 2 on the set of all tests ig an example ,f)f.a partial
order, X

- . ive sqravelation 2. If

B4, Lattice. Let B pe 5 poset relative fea relation 2, '
4, b, ¢ are elements of B and c 2 2, ¢ 2 B\We say that ¢ is an
upper bound of a and h. If also ¢ < x fQr.every upper bound x
of a and b, we say that ¢ is the least upper bound of a an;i_ b
and write ¢ =3 Ub, Iy terms of the\example of mental testing,
¢ could be 3 person who passed exactly those items which were
passed by at least one of a and Bt Analogously, if d < z;, ;:i < b,
we say that d is a lower bouwd@ of a and b, and if also d 2 y
for ali lowe ¥ WouARETY B 31u';zén'c?‘}?, we say that d is the greatest
lower bound of a and band write d - a Nb., Inour example d
could be a person whqﬁassed exactly those items passed by both
a and b, (\J

A pair a,b ne’e}\\qot have

are upperbounds to a and b but there i
Also z'agﬁiis case there are no lower b

henge mo greatest lower bound,
(A poset is said to be lattice if, for

\"“a, Uband a Nb exist. The lattice
between a partial ord

every pair a,b, both

is an intermediate mode!

er and a vector space,

rsonal Communication) hag recently investi-
theoretic treatment of information in

To each item of information he a850=

ent of a lattice, If two items of in-

€spectively with elements x and v

em which consistg of the information

ms is associated with the element

ansists of the information contained

€xperimenta] psychology,
ciates (process A) an elem
formation are associated r
of the lattice then: 1) the it
common to the original ite
XMy 2) the item which ¢
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in either of the original items is associated with the element

X 1Uy. As used by Miller an item of information might consist
of 2 cue or a sequence of cues in an experimental situation. The
common procedure is to summarize the structure of the experi-
ment by means of a lattice, given an experimental setup. How-
ever, the abstract lattice in turn can motivate new types of ex-
perimental situations and indicate analogies between experimen-
tal designs which otherwise would not be apparent. ~

B4, Weak Order. A transitive order < is defined on Bay,
and has the property that for every pair a,b either a < hior)
b<a. Iboth a<b and b$a, we say that a and b are.indif-
ferent. Indifference is an eguivalence relation (i.e.{Is\refiexive,
symmetric, and transitive). e,

A weak ordering would be illustrated by theghiitary ranks of
second lieutenant, first lieutenant, captain, mejdr, etc. Each of
these would constitute an eguivalence clas,s\\afld for any two offi-
cers (a,b), either a 2b or b Za, or both!

B, Chain, A poset in which every~pair is comparable is
called 2 chain (or simple order, on linear order, or complete
Qrd‘er}. Alternatively, a qp\%infa%]%u‘]v%%lg_o%q_eﬁnin which each
indifference class consists exflja singfe sldmelit" Here every
pair of elements is ordecéd,

The previous examgle;\of a weak ordering of military rank
could be converted fafo'a chain if date of rank, standing in class,
etc., were taken into dccount, Then, for every two distinct ele-
ments, a,b, either~a >b or b > a.

The ordinal $¢ales of classical measurement theory are ex-
amples of chains.

B5'~,‘I}art1y Ordered Vector Space. A special case of lattice
is previded by a real vector space {or a subset of a vector space),
Awector x = (xq{,* * =, Xp) is an ordered set of n real numbers
delled the components of the vector. We define x £y to mean
that xj € yj for each component. {Here the second symbol <
refers to the usual ordering of real numbers.} This definition
makes the vector space intc a poset, and this poset is a lattice
which is called a partly ordered vector space,.

A partly ordered vector space is illugtrated by the compara-
bility of individuals in mental abilities. Conceiving of intelligence
as made up of a number of primary mental abilities, each of these
constitutes a component or dimension. Then, it may be said of
two individuals x and y that y is at least as intelligent as x if
and only if vy has as much or more of each component as x does,
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The term ''vector" ig sometimes used in a4 more veneral
situation, I C1,+ -+, Cp are chain orders we may Cconsider
vectors or n-tuples ¢ = (e, - *, ¢} where the i-th conponent
¢j lies in the chain order Ci{i=1,-.. n). The set C of all
Such vectors ¢ is called the Cartesian product of €.+, C,
and is denoted by C = C1x...xCy We can make C intoa
poset by 4 process analegous to that used above for real vector
spaces. Note that a real vector space is the special case of g
Cartesian product of n factors Cy,* - -, Cp each equal Lo the
set of real numbers,

N\
2\, A

Bg, Simply Qrdered Vector Space, or Utility Spaf;e.,\A real
vector space (or subset) in Which x < ¥ is defined/Yexicopraphi-
cally, ie., x ¢ y if X1 =¥1s 0 ¢, Xjml = ¥i.1, X{AY is a spe-
cial case of simple order NS

A lexicographic ordering can be illustrated*by a manner in
which we might expect a fortune hunter t Nimipose a chain order
on a set of unmarried women. Presg Bly, financial assets
would be the principal component and{he might construct a weak
ordering of the ladies into, say fivelclasses, on this basis. Then
he would turn to the second componént, say beauty, and within
each of the financigl classes truct a simple ordering of the
ladies on thié"&'ﬁ”ﬁ]é?})gﬁglf}%l aﬁ?ﬁ?mmes (a,lr?)) would then be
simply ordered as follows:

1)% a were in a l;ggk}er financial class than b, 1 would
be preferred ¢4 b:

2) I a were inthe same financial class as b, then prefer-
ence would be determined by their relation on the beauty
compongnt;

N

By, Rea) Numbers, The transition to seales using the real
numbegs\ias been given additional importance by the development
of w)yﬂeumann-Morgenstern utilities. Even though one may
,w%s“h to arrive here in order to have 3 gj
\eision is to be made, it may frequently be desirable not to get
here all at once, but to keep the compo
until it ig necessary t
Measurement scajes involving the real
scale and the ratig Scale, have been di

literature [3], [5], 9}, (10}, [11]
here,

numbers, the interval
Scussed at length in the
and will not be pursued again
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IV. FURTHER EXTENSIONS

The various mathematical systems discussed here as avail-
able for measurement have been illustrated with objecis of the
real world mapped into the elements of an abstract system, A
further level of abstraction is provided by defining a "distance
fimction™ in the abstract system, in which ordered pairs of ele-
ments in the abstract system are mapped into elements of an~
other abstract system about which a variety of assertions may(\
be made, In the context of measurement, these pairs of elements
may correspond to "differences” between pairs of objects in’the
real world, These differences may themselves then be nfapped
into an appropriate abstract system such as one of these dis-
cussed here, AN

A number of these types of scales have been'd‘,ts'f:ussed by one
of the authors [4, Chapter 1], An illustratiomigvthe ordered
metric scale in which the objects themselv.Q&,Satisfy Bg, 2
simply ordered scale, and ordered pairs{ofobjects, regarded
as "distances" between them, satisfy B?;,x a partly ordered
scale. Such scales are now being utilized for the measurement
of utility and psychological probahility in experiments on deci-

sion making under mcert%mt?.ﬁ}éu{ﬁl‘ar‘y_org_in

~\¥. SUMMARY

7

N

One role of math }atical models is to provide a logical route
to go from charagteristics of the real world to predictions about
it. The alternative route is by observation or experiment on the
real world Lts}ff. The view expressed here is that these two
routes a;’s(cbordinate.

Thg.?aﬁ-ious scales used in measurement serve as an illustra-
tion.ofithe application of mathematical models and are subject to
tie 'same constraints as other mathematical models. That is, if
the’ axioms underlying the scale are not satisfied by that segment
of the real world which is mapped into it, then the interpretations
of the mathematical conclusions may have no reality or meaning.
Thus, to insist that measurement always constitutes the mapping
of physical objects into the real number system is to impose on
the real world an abstract theory which may be invalid.

A partial ordering of various alternative mathematical sys-
tems available for measurement has been presented with illus-
trations in order to reveal the relative sirengths of these scales
to which the real world must conform to permit their application.
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We make no claim lo completeness in this list of models for
measurement theory. Qur purpose is to puint oul the riciimess
of the set of possible models and to Five some examples that
show how the use of more general models can extend the domain
of classical measurement theory.

None of the discussion here should be taken as un arvument
for the use of weaker scales in the place of stronger scales for
their own sake. The measurcment scale utilized constitutes g
theory about the real world and the stronger the theory thee O\
better, so long as it is correct. The addition of axioms Lind
scale which are not satisfied by the real world is a _c:lep\';hﬁiy
from the path of progress, {

L
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CHAPTER III

ON METHODS OF AMALGAMATION

by
Leo A, Goodman®
"\
UNIVERSITY OF CHICAGQ
O\
7"\ N

1. INTRODUCTION AND SUMMARY _\ .’

< 3

The problem which shall be the concern of this paper is
closely related to the problem of social choitgand individual
values [1], the theory of statistical decisions26}, the theory of
games against nature [21], the problem of’n6rmative behavior
under uncertainty [20], and the problem ef cooperative aggrega-
tion [12]. Let us first state the problem formally, We are given
& finite matrix U \ ¢

up T Y o
upy, U2z U3 U24 ¢ e
’if}n uzg u33 ug4 * * * U3c
g1 u4g u4g u4q ¢ C T uge

o
o4
/e

o
"\~.

%.. Up] Up2 Up3 Urd =+« i

#
2 &
ol

’gsf; atilities ujj which measure the utility of row 1 for column j,
Part of this research was carried out while the author was a
member of the University of Michigan Summer Seminar on De-
sign of Experiments on Decision Processes. A part ofthis work
was prepared under an Office of Naval Research contract, Some
of the results were presented at a joint meeting of the Econo-

metric Society and the Institute of Mathematical Statistics at
Michigan State College, East Lansing, Michigan, on September 2,
1952, The author is indebted to Harry Markowitz of the Rand
Corporation for many helpful suggestions,

39
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The problem is to devise rules (methods of amalgamation; for
choosing the row with the “greatest utility.”

In games against nature [21], the rows represent possible
strategies among which the player must choose and the columns
represent possible states of nature. The payoff to the player
when he chooses strategy (row) i is given by the entry ujj if
hature is in state (column) j. Here the entry ujj represents a
ven Neumann-Morgenstera utility., The problem is to determine
criteria or devise rules which the player might use for chybds-
ing the strategy (row) which will give him the "greatest uti[My,”

In the problem of social choice and individual values¢dy the
FOWS represent possible social choices among which €he "best”
choice is to be made and the columns represent thesdndividuals'
values. That is, the value which individual j asc'ribes to social
choice i is given by entry ujj» The entries may Fepresent the
utility of social choice i for individual i, bubwill usually only
describe the rank order assigned to social¢hoice i by individual
j(eg., ajj =1 if individual j ranks sogia choice i as his least
preferred social cheice, ajj = 2 if igdividual j ranks social
choice i as next to the least preferred social choice, . . .). The
p:’ro‘blem is then to amalgamate thesvaiues of the different in-
dividuals wo&}}m&%,ﬁ&gg%ﬁgg@mke the social choice which is
'most preferred’ Y the group of individuals,

. In the theory of statistical' decisions or the theory of norma-
tive behavior under Uncertainty, the rows represent courses of
action and the columng represent the possible states of the world
(see, e.g. [23]), Th%@xpected Income resulting from act i is ujj

if the world is in(State j. The problem is to choose the "best"
course of actiows

In the prebiem of Cooperative aggregation the rows may

rnatives and the columns represent dif-

feren%\_ €s of comparison, ©.E., price, efficiency, and looks in
comparing automobiles, Then the problem is to amalgamate the
’dlgfigr'ent bases of comparison in order to arrive at a method for
deeiding which is the "best" alternative,

‘ These problems have been studied by economicts psycholo-
gists, sogologists, statisticiansg, mathematicians ar;d philoso-
phers, Since the formal aspects of these problen;s are so closely
reliated to each other, one would expect that some of the results
Wwhich have been obtained by, say, the statisticians would be re-

by those studying the i
\ ults ¢ praoblem of social
choice ang individual values (and vice versa), Furthermore, one
of the results by, say, the statisticians



ON METHODS OF AMALGAMATION 41

would have implications for the problem of social choice {and
vice versa), Some of these relations and implications are
studied in this paper. A general method of amalgamation is
presented which includes as special cases (a) the Laplace cri-
terion for the problem of statistical decision, (b) the method of
majority rule when this rule leads to a social choice, (¢} the
"veasonable” social welfare function of A, H, Copeland, and

{d) the Bayes solution to the statistical problem. This general
method of amalgamation may also be used in order to develop
still other criteria which are special cases.

N
£ X
2\

"\

2. SOME METHODS OF AMALGAMATION.\ -

c 'O
Suppoese that .2‘:1 ujj is considered as a mea:silre of the
1=

utility of row i in the case where the utilitiés'are real numbers,
Then the best row would be the one for whieh the average of the
entries is greatest, This method of amalgamation has been
called the Laplace criterion. Articles-690, 719, 806, 990 of [24]
discuss the history of this criterien,’ (I am indebted to Churchill
Fisenhart and Dick Savagewof ththBubéaargfoBiandards for their
historical research on this problem which brought this reference
to my attention.)

If relevant probablhtif?s associated with the celumns may be
computed (i,e., if a mber pj 2 0 may be assigned to column j
for j =1, 2,1+, ¢}, then another method of amalgamatlon,

called the Bayes%olutlon [3], may be used. Then Eluljp} may
N }=
be consi ed‘ as a measure of the average utility of row i and
the bestsow would be the one for which the average utility is
greatest. The Laplace criterion is obtained if P; is the same
for &Ny,

<. The method of majority rule for the problem of social choice
is another criterion for amaigamation which may be described
as follows. The entries in the matrix U are taken to be utilities,
and with respect to any pair u, v of utilities it is assumed that
one of the following three decisions can be made: (1) u is pre-
ferred to v, (2} v is preferred to u, (3) neither is preferred to
the other, With each pair u, v we associate a number s{u v)
which equals +1, -1, 0 respectively according as (1), (2), or

(3} holds, Then row i will win a majority of the votes in an
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c
election with row k, if 3(1,1() = _?jI Q(Ujj,l]kj} is pusitive, Rowi
is considered best if it will win & majority of the votes in an
election with every other row. That is, that row | i« chosen
for which ¢(i,k) is positive for all k £ 1. A row with this
property may not exist and in that case no "best” row is oh-
tained, ‘

A, H, Copeland [11] has suggested another method of amgls
gamation which he calls a "reasonable" social welfare I'pn\ction.
This method is a modification of the method of majm‘.i,t\i"rule
which permits the rows to be ocrdered. Copeland's sdcinl wel-
fare function might be paraphrased in the following™anner.
Let sgn x be the signum funetion of x: 1o

AN
+1 for x>0,080
Sgn X = {{]forx:%,
-1 for x40.”
¥

r A ‘D .
We consider 3{1} = kzl sgn (i, k) 82 measure of the utility

of row i, and choose that row fOP which 3(1) is greatest.

A geIIErB«Lm@Hiﬂdudih&maflfgnéimﬁon will now be presented
which will help to make clear the relations between the preced-
ing methods and which #ill suggest still other methods of amal-
Bamation. This general method will have as special cases all
of the preceding wetkods including th

when that rule lead
»V) which is positive when u

o2V, negative when v is preferred to u. and zero
when neitHe® is preferred to the other, Let t{x) be a non-

decreas(ng iunction of x and let Pj Z 0 be any number assigned
to cplu'hxn 1. Then row i is better than row k by an amount
N, c
mﬂb;('&k) i P{ik) = ‘EI S(ujj,ukj)pj is positive, As a measure of
Ny =
) 4
\the utility of row i, we take

b d
2 tle6,K)]
k=1

and choose that row with the greatest utility,
The choice of Pj depends on whether relevant probabilities
be assigned to the columns, In the theory of sta-
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associated with the various states (columns) of nature. In the
problem of social choice, the p; might be the weight assigned to
the values of individual j or the influence which individual j has
in arriving at a best social choice. The function s(u,v) meas-
ures how much importance is to be given to the preference be-
tween the two utilities u and v, The function t(x) measures
how much importance is to be given to the amount x that row i
i better than another row in determining the utility of row i
For example, in the case where the utilities are real numbers 2\
and s(u,v) = sgn(u-v), then only the fact that one utility is great-
er than ancther utility has significance; and the amount by whieh
it is greater is considered irrelevant, Also, if t(x) = sgi % ‘then
only the fact that row i is better than row k has mgmﬁcance'
and the amount by which it is better is considered 1rre1evant

In the special case where t(x) = x, the utility, of TYow i may
be written as

r c
2, ok = Z[Z S(Uij,ukj}}élj’ .
k=1 j=1Lk=1 S

r \
We might consider kzl S(Uijsukj) r—.;rﬁ,j(i) as a measure of the

e

utility of row i ior column jww etl)'fcaU“ﬁ{chfftlﬂflgy of row i may

be written as E ij(l)PJ, a{welghted sum of the utility of row i
i= \
for the various colum Q& _

For the Bayes sglution, it is assumed that the utilities are
real numbers, 8(Gy) =u- v, and t{x) = x; and the Laplace cri-
terion is obtamed if further the Py is a constant a. For the
method of majority rule p; = a and s(u,v) is restricted to the
values +1¥1' 0. The Copeland solution is obtained if further

t(x) = sgn X, That is, in the method of majority rule and in the
Copeland solution, the strength of individual j's preference

is considered irrelevant; only the fact of whether or
not Ile prefers row i to row k is of significance,

Suppose we now consider the following modification of the
Copeland solufion where t(x) is taken equal to x rather than
sgn %. Then as a measure of the utility of row i, we have

r

r ¢ c r
X otk = 3 20 slypug) = 20 2 slujgug)
i=1 k=1

k=1 k=1 j=1
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Now the rank order Eij assigned to row 1 by person j s, in
fact

r
- 1
aij = E{kzl S(uij’ukj) + T + ]} .

Hence, the measure of the utility of row 1 ix

C &

2 X @4 - clrel), .
=1 A\

Therefore, this modification of the Copeland solutiodgnay be
stated as follows: Replace the entries in the matsix by the rank
order assigned by each column, and then apply, tgle Laplace solu-
tion to the ranks. By modifying the values gf<the p; in the Cope-
land solution, the rule that the Bayes solubidi”should be applied
to the ranks is obtained, PN

Still another methed of amalgamation/which is not inc!uded'
among those already described her#{) is the minimax (maxm}l{l}
principle. This principle states tHab in the case where the utili-
ties are real numbers we shoqldj’choose that row where Lthe
smallest entr{ywiabt]ljaqlgg}sgp?gfggnas large as possible: that is,
maximize the minimum enfry.  This principle is sometimes ap-
plied to a matrix le.g. of Iosses) which may be obtained from
the original matrix yQPutilities, When probability mixtures of
rows (mixed acts fie/also considered, the best row {or the
best probability, mixture of rows) will be the solution of the
matrix considefed as the matrix of a two person zero sum game.

MOdificatii}n's of the minimax principle have been gugpested
by Hurwicz 18] and by Savage [23], (See also Chapter IV.}
:~'\s.

NS

3. BOME RELATIONS AND IMPLICATIONS

™

7 N
,(\} “ For the statistical problem
that knowledge of the values o
implies economic knowledge
statistician, There are often

ture which make it difficult to

» it has been pointed out (e.g. [23])
f the entries uj; in the matrix U
not often available to the working
problems of a computational na-
determine the values of the en-
hich the statistician might face,
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For some problems of social choice, the strength of individ-
ual preferences may also be obtained. In that case, the eniries
uj; will describe the strength of the individual j's preference
for social choice i, The problem of social choice is then very
similar to games against nature and the statistician's problem,

It is interesting to mote that a result obtained by Blackwell
and Girschick [8] for the problem of statistical decisions is re-
lated to the work of Markowitz and Goodman [15,16] on the
problem of soeial choice and individual values, Blackwell and(\
Girschick [8] show that if there is (1) a complete order of.all
the possible rows (the ujj range over a continuum), (2) Pareto
optimality, and (3) independence of origin (indifference‘of na-
ture) which requires that the complete ordering rem@ain in-
variant under addition of a constant to the utilities’for a given
state of naéture, then the ordering is representabfe by a linear

function T ujj Pj where ujj is the utility Q{row i when nature
]:1 .~\ /

is in state j and pj 2 0 is a set of weights which are inter-
pretable as a priori probabilities. Ii\[2], Arrow points out
that conditions (1), {2), and (3) had been suggested by Marko-
witz and Goodman in [15] as poséﬁbly reasonable conditions to
be imposed upon a social weKirdbranbilion {o¥dering of social
choices). In [15] and [16] the weights p; are interpretable as
the amount of influence j:x{iich individual ] has in making the
social choice,

An interesting refation exists between the work of Clyde
Coombs [10] and Duncan Black [56]. In [10] Coombs suggests
three differenthm@thods for obtaining social utilities., We shall
be concernedsonly with the first two methods. The first method
gives ”egﬁdh\veight to each individual and weights each prefer-
ence by/ts strength.” He finds that the rank order assigned by
the median individual will be the rank order of the social
choices, Another way of saying this would be as foliows: Con-
&ider the scale on which the stimuli {rows) fall, Now place
each individual {column) on this scale at the point which he
prefers the most., Then the median individual according to this
ordering is the one who determines the sccial choice, Coombs
considered a second method where each individual had equal
weight and each preferential judgment (vote} was weighted
equally, Coombs found empirically for the experiments he had
performed that these methods gave quite similar results,

The second method considered by Coombs is similar, though
not identical with the method of majority rule. The following
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theorem due to Black [5] determines the best Aucial :-hniced
when the method of majority rule is used: Ftaf- :-,u.lgi.lu- p[‘dkf:. }
preferences (the Coombs model in {10] satizfic+ tuiz condition),

the majority choice may be obtained by lm)kin;-;_mq_v it tha; first
choice of the median individual when all of the individuals are
considered arrayed according to the underlying scale, HEI}CE
this theorem shows that the first choice obtained by 1:1'.1‘101"1@ }
rule will be identical with the first choice obtained by Coonibs
first method, A
Coombs has shown that the entire rank order of th{ mel?d'lan
individual will be the rank order obtained by the soc i) utility
based on strength of preference if the condition.‘i 5)‘f:,hif~: model in
[10] are satisfied. The theorem by Black [5] Adétérmines the
first choice for the method of majority ruleysbit it does not dis-
cuss the entire rank order, {The second chdie¥ for the method of
majority rule is that choice which wins..abrﬁajority over all ott:;é'
choices except the first choice, The third choice for the met
of majority rule is that choice whish\wins over all other c‘hmces
except the first and second choicesy’et cetera.) It seems inter-
esting to note that Black's theqr®M cannot be extended to the

entire rank order. That is, iftfs not generally true that the

rank order*of ¥HEPE{E }"i‘%;{%ﬁhm will be the rank order ob-
tained by the method of m

ajority rule when the condition of
single peakedness ig satisfied, (See [5].} A numerical examp!?
may be given to i ustrate this point, However, it is true thati
the conditions of Coombs' model in [10] are satisfied, then the
rank order of the’median individual will be the rank order ob-
tained by thexmeéthod of majority rule; this is due to the fact that
for CoombsMmodel the majori
the median individua]
the lga;ko scale (i.e., Qpjj < Quy), then if the _
median individual ig nearer j than k, it follows that all the in-
dividuals to the left of the median individual will be nearer 1
and hence the majority will prefer j. Also if the majority is
nearer j than k, it follows that the mediap individual will be
hearer j than k, It has been shown that the rank order ob-
tained by majority rule ig determined by the median individual
in Coombs' model, as was the social utility based on strength of
Preferences, Hence, the method of majority rule and the social
utility based an str

ength of preferences both lead to the same
rank order in Cogmbg' model,
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CHAPTER IV

GAMES AGAINST NATURE"

by
John Milnor
PRINCETON UNIVERSITY

N
RE )

1. INTRODUCTION O

g W

The object of this paper will be {o study games of.ihe"follow-
ing type. A matrix (ajj) is given in which a player, must choose
a row. A column will be chosen by "Nature', dxietitious player
having no known objective and no known strategy. The payoff to
the player will then be given by the entry jfidhat particular row
and column., This entry should represéut'a numerical utility in
the sense of von Neumann and Morgen&tern, (See [3] or (1]

It will be shown that several known criteria for playing such
games can be characterized by sitiplRmBIieRSrgin axiomatic
procedure will also be used tojériticise these criteria, and to
study the possibilities for gther criteria,

{Qur basic assumptiopthat the player has absolutely no in-
formation about Natu e'\}nﬁy seem too restrictive, However
such no-information‘;}mes may be used as a2 normal form for
4 wider class of games in which certain types of partial infor-
mation are aliowed, For example if the information consigts of
hounds for thé/probabilities of the varicus states of Nature, then
by considéring only those mixed strategies for Nature which
satisfy tHesé bounds, we construct a new game having no infor-
mation*Unfortunately in practice partial information often oc-
curglii vague, non-mathematical forms which are difficult to
haggdie. )

The following criteria have been suggested for such games
against Nature,

Laplace, I the probabilities of the diiferent possible states
of Nature are unknown, we should assume that they are all equal.

T ———— .
The préparation of this paper was sponsored in part by the
RAND Corporation. The author was & National Science Founda-

tion fellow during 1952-53.
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Thus if the player chooses the i-th row his expectation is given
by the average (ajj+- - - +ajp)/n, and he should choose 2 row for
which this average is maximized.

Wald [4] (Minimax principle). If the player chooses the i-th
row then his payoff will certainly be at least Min aij. The safest

possible course of action is therefore to choose a row for which
Min aj; is maximized, This corresponds to the pessimistio. hy-
N

pothesis of expecting the worst. RAY.

H mixed strategies for the player are also allowe’cl,,‘ then this
eriterion should be formulated as follows. Chooge.’a probability
mixture (£y,««+,£.1) of the rows so that the Guantity

. \.
Mjm (¢ 1315+ - * +5m3mj) is maximized, In"o:bher words play

as if Nature were the opposing player ind\?érc sum game,
N
Hurwiczl. Select a constant 0 £00< 1 which measures the
player's optimism. For each rowde¥ probability mixture of
rows] let a denote the smallest Component and A the largest,
Choose a row [or probability aitxture of rows] for which oA +

(1-a)a is maximi A j i-
terio)n \’13“\13\’2\’9 'raﬁﬁﬁﬁry&gt.‘?ﬁs reduces to the Wald cri

Bavage [2] {Minim?a} Regret). Define the (negative) regret

matrix irij) by Iéﬁﬁ'aij - Méx 2kj» Thus rj; measures the

difference between the payotf which actually is obtained and the

payoff which\feuld have been obtained if the true state of Nature

had been k’nowu Now apply the Wald criterion to the matrix
(Mr;j)-\Th\a‘t is choose a row [or mixture of rows] for which
jm..frﬁ for Mjm (Eqryy+. . *+§mrmj)] is maximized.
ertainly different., This is illus-

L These four criteria are ¢
“\trated by the following example, where the preferred row under

‘each criterion ig indicated,
2201 Laplace
1111 \wawg

0400 /Hurwicz {fora > 1/4)
1300 Savage
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2. AXIOMATIC CHARACTERIZATION QF CRITERIA

In this section we will consider criteria which assign to each
matrix (aij) a preference relation 2 between pairs of rows2
of the matrix. It will be shown that each of the four criteria of
1 is characterized by certain of the following axioms. The first
five axioms are compatible with all four criteria.

1. Ordering, The relation 2 is a complete ordering of the .
rows, That is it is a transitive relation, such that for any two
rows r,r' either r 2 r' or r' 2 r, O\

NS *

2, Symmetry, This ordering is independent of the sumbering
of the rows and columns. o\ 3
(Thus we are not considering situations where there is any
reason to expect one state of Nature more thahanother.}

w\7
3. Strong domination. If each componedtsi r is greater than
the corresponding component of r', thefi\t > r' (shorthand for:
r2 ¢ butnot r' 2 r).

(k;*' Continuity. 1f the matriceﬁ»}ﬁfi(f}ﬁ)mmuﬁwm:g.aqj, and if
;2 > ri ) for each k, then‘thé limit rows r and rp satisfy
r .
1-

5. Linearity, The ‘&iﬂ;{érin ion i if th
. . g relation is not changed if the
matrix {a;j) is repliced by (afj) where alj= Aajj+ #, X > 0.
The following\folir axioms serve to distinguish between the
four criteria /o
'S
ch 6. @H@Eﬁ_ﬂ. The ordering between the old rows is not
ang.?q,’by the adjunction of a new row.

5%7} Column linearity, The ordering is not changed if 2 con-
t is added o a column.

ngs can be interpreted as an assertion that Nature has no
utﬂ«l‘:dl.ceg. for or against the player. It also asserts t}}al_t ‘the
but af Is linear, not only with respect to known probabilities,

c 150 with respect to unknown probabilities of the type under
0n51derati0n_)
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8. Column duplication, The ordering is not changed if a new
column, identical with some old column, is adjoined to the
matrix, (Thus we are only interested in what states of Nature
are possible, and not in how often each state may have been
counted in the formation of the matrix.)

9. Convexity. If row r is equal to the average ~1—(r' +r") of

two equivalent rows, then r 2 r', 2 ~
(Two rows are equivalent, r'~r", if r'>r" and 2, This
axlom asserts that the player is not prejudiced agains,t\xz'&ndom-
izing, If two rows are equally favorable, then he does\not mind
tossing a coin to decide between them.) G

Finally we will need a modified form of axioth, & which is
compatible with all four criteria, RS /

10. Special row adjunction, The ordering between the old
rows is not changed by the adjunction,o’i\\d’ new row, providing
that no component of this new row isgreater than the corre-
sponding components of all nid rowsy

The principal results of this section are all incorperated in
the following diagram, which @escribes the relations between
the ten axioms and the fcl f;glf}t.gﬁ'é?in The symbel X' indicates

that the correshinding axiem and criterion are compatible,

Each criterion is char@bterized by those axioms which are
marked "“"H", *,\

N Laplace Wald Hurwicz Savage
1. Ord.e‘rzhg” ® ) [ &
2. Symmetry ] 4 [} L
7\
?{\’St'r. Domination 8 R ® o]
R \4 Continuity X ] ] =
~\' )
«/ | 9, Linearity X X X X
8. Row adjunction ® ] B
7, Col, linearity -] ]
8. Col. duplication = & &
5. Convexity X & b
10, Special Row adj, X X X ]
LT e Ad). |

-
Diagram 1, X = compatibili
,, magr . = patibility,
Each criterion ig characterized by axioms marked ®
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Theorem 1. The Laplace criterion is compatible with all of
these axioms other than axiom 8; the Wald criterion with all but
axiom 7; the Hurwicz criterion with all but 7 and 9; the Savage
criterion with all but 6,

The prociz are all completely trivial, Perhaps the following
two examples are of interest. In the first matrix the Hurwicz
criterion {for « > 0) is not compatible with axiom 9 (convexity).
In the secand pair the Savage criterion is not compatible with

axiom 6 (row adjunction), O
200 2t 21
() GD—(31) 4
020 -1 4/ AT

N
77%G
S

Theorem 2. The Laplace criterion is characterized hy
axioms 1,2,3,6,7, 9

It is first necessary to prove the followng.‘

Lemma 1. Assuming axioms 1,2,6 (o‘iwdering, SYMInetry, row
adjunction) two rows which differ oniy.n the order of their com-
ponents are equivalent., o\ ¢

Adjoin a sequence of interm‘e‘ﬁ-’ig'tgbrr-g\%lslbégréfigig&rno consecu-
tive rows differ only by a perfhutation of two components. The
résult now follows by an application of the symmetry axiom to
€ach pair of consecutive-pows.

The proof of theore«ifrﬁ follows. Suppose that the average of
the components of ¥,_etuals the average of the components of r',
Alternately perform/the following two operations on the matrix:

a) Permute’tie’elements of r and r' so that they are in
order of incréasing size. (Permissible by lemma 1, and axiom B}

b) Sub%é’é’t from each column the component in r or the com-
Ponent igx*, whichever is smaller. (Permissible by axiom 7).
AFter @finite number of steps, all of the components of r and r'
WL B8 zero, It follows that r ~ r'.

Now using axioms 3 and 6 it follows that r>1' whenever the
average of the elements of r is greater than the average of the
®lements of ', Thus the criterion is that of Laplace.

Theorem 3. The Wald criterion is characterized by axioms

1,2,3,4,6,8 9,

Two lemmas are first necessary.

H Lemma 2, Assuming axioms 3 and 4 (domination and con-
--l-f-llli_t.)_’_)_,__i_f_gach component ¢f r is greater than or equal to the
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corresponding component of ', then r 2.
3

The proof is clear,

Lemma 3, Assuming axioms 1,2,3,4,6,8, two rows which
have the same minimum element and the same maximum ele-
ment are equivalent,

Let (ay,+ ++,ay) be any row having the minimum component
a and the maximum componeat A, From lemmas 1 and 2 it\
follows that

(a-,' ",a,A) S (3.1,' * ';an) S (A')- * .:Asa)‘.'\:,\

£\
But (a,- - -,a,A) is equivalent to (A,+ .+, A a) since-the matrix

7N
< R

a-.-3a 4 . AN fa A
(A- A &) can be obtained from the symmet‘{j{al matrix (A a)

by column duplication, Therefore any twosrdws having minimum
element a and maximum element A ar@equivalent,

Proof of theorem 3. By lemma 3.it1s sufficient tc consider
pairs (a,A) with a¢ A in place of Pews. Applying the convexity
axiom (9) to the matrix \ o

1, o8
www/ raal {&tg}%ﬂorg_g?ﬁl&)
a ~a° A

\.a( A a

we have (a,A) < ’6{,\%’ {a+A)), By repeated application of this

rule, together. with the continuity axiom, we have {a,A) < (a,a),

hence (a,AP{Aa,a). It follows easily that the criterion is that
of Wald, />
:“\‘~

.Ihéﬂi'em 4. The Hurwicz criteria are characterized by
axioms 1,2,3,4,5,6,8,

£\
\m\} ~/ Again it suffices to consider pairs (a,A) with 2 < A. Leta
be the supremum of all numbers «* such that
(@, a') < (0,1).
Efy t‘he domination axiom it follows that 0 £ o 41, Bycon-
tinuity it follows that (o, a) ~ (0,1). By linearity
@A+ (1-a)a, ¢ A + (1-a Ja) ~(a,A),

whenever a < A. Tt follows easily that the given criterion is just

that criterion of Hurwicz which corresponds to the parameter
value o,
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Theorem 5. The Savage criterion is characterized by axioms

1,2,3,4,7,8,8,10.

A matrix will be called noermalized if it contains a row Ty,
consisting entirely of zeros, and if it contains no positive com-
ponents, Any given matrix can be normalized by first sub-
tracting the maximum element from each column, and then ad-
joining the row ro. By axioms 7 and 10 these operations do
not change the ordering relation between the old rows, Ina
normalized matirix we are free, by axiom 10, to adjoin any row {
which contains no positive elements and to delete any row other
than ry. The proof is now completely parallel to the proof of A
theorem 3. 1t is only necessary to require that all matz:i&és
considered be normalized,

7
3

ot ¥

L W

L\ N

3. CRITICISM OF THE CRITERIAY
w\/
, "

Tk_lere is one fundamental principle which has not yet been
mentioned: that of domination (or admjssibility). COne strategy
I8 said to dominate another if it is just\as good in all states of
Na_ture and definitely better in at leaSt one, It is natural to re-
quire that the following axiom bejd#tisthedulibrary.org.in

3'. If r dominatés r' then r>r1'.
This axiom is not compatible with the criteria of Wald, Hurwicz,
and Savage. Each of tHeSe criteria could be modified in a trivial
P’a}’ S0 as to satisfyh3', but the result would violate the equally
undamental axiom®f Continuity. This difficulty is illustrated by
the following two\.éxamp]_es‘

Example 1\ Consider the family of matrices

SO 211
O 2 2 k

:’;1;1'9 05 k S£1, Mixed strategies are to be allowed. In the
nate k=1 the second row dominates the first. It is therefore

. Ural to expect that the second row should be chosen gx‘clu—
ely for k = 1, and should be chosen with high probability for

( tlose to 1, But according to the Wald and Hurwicz criteria
?< 1) the fipst row should be chosen whenever k<1, {Compare
8gram 2), In this example the Savage criterion has the ex-
Pecteq behavior, hut in the following, more complicated, example,

¢ Savage criterion is also unsatisfactory.
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Laplace..
Laplace I - ! Q_:\
e .

L Savage /| I Y VHarwica i

| ! ' - 1/4) —. :

| l | | (@ = 1/4) L\ |

l | ! Ny
1 L ——"Waldand; 1 | N
3 | Hurwiczy! 3 : Ve | Wald andN

l le<1) | | Savage :

: i : .\'\2 i

: | | NN - _— I:
0 I _____________________ I 0 L _____ I, .;._{“f_______:-—a-
1 N 1
0 5 1 0 AN ¢
2 'O 2
Parameter k .I?g\.r‘anlet{-?r k

Diagram 2. Probability _Biagram 3. Probability

of choosing second row ~00f choosing last two rows

{(Example 1.} AV (Example 2.)

Ne/

Example 2. C&nsai[ﬂ?gl thefﬁétrices

W w Abr Cay, O gL L1
) 1 0 1 o
Y o1 o1
\\x 1 1 k¥ 0
. 1 1 0 k

where 0§}1’-\§ 1, For k=1 the first two rows are dominated,
yet agg\b:r\ding to the Wald and Savage criteria thege two rows
should.be chosen exclusively whenever k <1, {Compare dia-
gram 3). Only the Laplace criterion gives a satisfactory solu-
',,\~t1’,tm in this example,
#\/ The Laplace criterion has been successful under all of the
’ tests which have been made of it, with the single exception Of‘
axiom 8 (column duplication), It appears that, if we are willing
to sacrifice this axiom, then the Laplace criterion is definitely
the best, However in many applications it is desirable to pre-
Serve axiom 8. This is particularly true in cases where there
is no clear and natural Separation of the possible states of
Nature into a finite number of distinct alternatives.
Thus ail of the criteria under consideration seem unsatis-
factory in that they fail to satisfy certain rather basic axioms.
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4, PQSSIBILITIES FOR OTHER CRITERIA

Tt has become apparent that no possible criterion can have
all of the properties that one would desire. It is therefore natu-
ral to try constructing a list of those properties which are most
fundamental and important, to see if at least these can be satis-
fied, The following is the author's attempt to construct such a
list. Others would doubtlessly have given rather different lists.

Let S denote the simplex of mixed strategies over the rows A\
of the mairix, .

O\
I. To each matrix there corresponds 2 non-vacuous choice

get C contained in S, O

{(The complete ordering of 2 really gave more inforpiation than

W4S NECEesSATY.) (¥
II. Symmetry. C does not depend en the nihbering of the
rows and columns. \\

III. Domination. Every element of C;i?&ﬁhdominated ( = ad-
missible}, O\
(k)

—_— 5,

IV. Continuity, If a%{)-—- a5, s.?‘.‘l.’eC(aﬂ‘)l, and §
then seC(aij). ‘*\.a?w:‘»:{r_dbraulibr‘al'y_or‘g_in

V. Row adjunction, The.choice set is not changed by the ad-
junction of a new row whieh\is dominated by some old row.
{Some stronger row adjuuétion axiom would be desirable, but at
least this much seema& dispensable.)

The following thkege axioms are also desirable, although not
as basic as the ¥ifst five.

VI. Colum’}{lplication. C is not changed by the adjunction
of a duplic‘@:e of some column.

VIL:Column linearity. C is not changed by the addition of a
constant to a column.

)
\VIII. Convexity. C is convex,

Evidently no criterion which has been mentioned so far
satisfies all of these axioms.

Theorem 6. There exist criteria which simultaneousty satis-
iy the preceding eight axioms.
First consider the following slight modification of the Savage

criterion, Let S be a convex polyhedron of mixed strategies
for the player, and let py,+ * *sPn be linear payoff functions oz
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8, corresponding to the n possible states of Nature, The nega-
tive regret is defined by r;(s,8) = pils) - N'Iazsi p]-(s'). The Savage
s'e

choice set C(S) consists of the set of all strategies se3 for
which Minry(s,8) attains its maximum M. Instead we will con-

J
sider the set Cg(8) consisting of all s€S such that

Min rj(s,S) ZM-£&.
] Q)

The required criteria are now constructed as follows., {Choose
as parameters an infinite sequence of positive numbexjs\' N
51,52, -+ which converge to zero, Define the sets, g 3813 ree
by Sp = 8, 8 = Cg,(8;_1). As choice set C(g,, 62§:.,}._)(S} we
take the intersection of the S;. \‘

The axioms I through VIII may now be ¥epified. The proofs
will not be carried out, since they are rather involved (at least
for domination and continuity)., In any g¢age these criteria are
probably too difficult computationallyto'be of practical interest,

A further interesting property which is possessed by these
criteria is the following., The n%payoff functions are all constant
on the choice set. Thus any two elements in the choice set are
completely equivatentrauliBrary org.in

It is interesting to ask if there exist any simple, computable
criteria which satisf?zﬁ?ll of the preceding conditions.

X\

N\

FOOTNOTES

NGO
1. Suggeg.\@d“by L, Hurwicz in an unpublished paper.

2 Fgﬁé%rhplicity, only pure strategies for the player are con-
sidéred in this section, However the results can easily be gen-

) :egaiized to the (more natural} case where mixed strategies are
\’\Jarllnwed.

3. Lemma 2 suggests the following criterion. Define r2r’ if
and only if each component of r is 2 the corresponding compo-
nent of r', It may be shown that this criterion satisfies all

axioms except 1, and is characterized by 2,3,4,6,7,8, together
with the transitivity portion of 1.

4, Let r be preferred to r* (in the modified sense) if either

r>r' in the old sense (of Wald, Hurwicz, or Savage} or r
dominates r',
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CHAPTER V

NOTE ON SOME PROPOSED DECISION CRITERIA®

by
Roy Radner and Jacob Marschak ~N
COWLES COMMISSION FOR RESEARCH IN ECONOMIS&S\
O
i, SUMMARY s«

? '\’

The purpose of this paper is to apply two cigrently advocated
statistical decision procedures to a simple rpblem and show
that they result in solutions that have certa}s%'undesirable prop-
erties, Each of the two procedures is alereralization or inter-
pretation of the minimax principle, The‘problem consists of a
game in which an individual cbserygs'and bets on the outcomes

of tosses of a coin with constant, ﬁut"gﬂknci}'gn probahility of fall-
ing hEads. z.ijw. raulibrary.org.n

™
ny

\.2:‘ENTRODUCTION
S
2.1, The Ratiofal Decision-Maker, In this discussion we
shall consider wiindividual decision-maker who is rational in
the fOllowing‘xs\:edse: if he can specify a set of "states of nature"
Such that fom @ given state n and a given strategy he knows the
Probabiljtytistribution of outcomes, then he will always

'.\(1"} choose some admissible strategy (when possihle),l
N\ {2} choose the strategy so as to maximize his expected
Ntility, if he knows the true state of nature.

Let U(s,n) be the expected utility when n is the true state of
n?tUr_B and the individual uses strategy s. A strategy sg is ad-
missible if there is no other strategy s such that

U(s,n) 2 U(sg,n), forall n, and

RT———— ‘
*Thjs research was carried out under contract with the Oifice

3f llmm1 Research. We are indebted to E. Lehmann for several
aluable suggestions and discussions.

61
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U(s,ng) > Ulsg,ng) , for some ng .

2.2. The Minimax Principle. If the individual does not know
the true state of nature then, in general, the criterion «f admis-
sibility will not be sufficient to enable him to choosc a strategy;
thus some further criteria are needed. Such a criterion is
Wald's "minimax principle.,” {Cf, [8], p. 18) One interpretation
of this principle is: "Minimax the negative expected utility,”.\
t.e,, choose & to achieve

min max [-U(s,n}] . R\
S n O
This interpretation has been attacked by many as tosyjessimis-
tic (cf, for example 7], p. 63), and it is this und®sirable prop-
erty which has, in part, led to the proposal of‘t@o\alter‘native
criteria which we will now consider. ’
X.\\: .
2.3, The Hurwicz Criterion. The fifst of these, which might
be considered as comprising a whole'class af criteria, including
the minimax principle as just statedyis a generalized form of a
criterion proposed by L, Hurwiez{3]. In this generalized form
it requires that a strategy be..(:l;ibsen which maximizes:

(1) ‘ﬁ(é‘i'dET‘%f'{"é’ﬁiﬁf(g',}%}‘,“tnf Uls,n) )
pre n

where ¢ is some iixedf%onotone increasing function of each of
its two arguments. X itself is chosen by the decision-maker

and in some senge, characterizes his attitude towards uncertainty.
A special case{the one actually suggested by Hurwicz) is

{2) Nt =
“\s.

@ Sup U(s,n) + {1-a) Inf U(s,n}
\;“' n n

wher:fl'\ir is some fixed number between 0 and 1. Here o might
be regirded as a degree of optimism (cf. [4], p. 344).

o We will present an example in which application of the Hur-
\\})icz criterion leads to the conclusion that at most one observa-
tion should be taken in a situation in which common sense de-

mands that a large number of observations be taken.

2.4, The Minimax Regret Criterion,

taken by L.'J, Savage, 7], who gives good reason why Wald
co'_uld not have considered negative expected utility as the appro-
Priate thing to minimax (cf, Wald [8], p. 8). Instead, Savage
:s'ays the proper interpretation of the "minimax rule", is:
Choose that strategy which minimizes Sup R(s,n) where
n

A different direction is
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(3 R(s,n) = Sup U{s',n) - Uls,n} .
S

We will call Ris,n} the regret function.? Chernoff, {2], has
criticized this principle because there are cases in which, if
the domain 8 of the player's available strategies is enlarged,
a new minimax regret selution is obtained which differs from
the old one, yet is contained in the original 3, (This is not sur-
prising, since the value of R(s,n) for any pair (s,n) depends
upon the domain 8. Note that this is not true of H(s). ) \

It is interesting to note that the idea behind Chernoif's opjec-
tion has analocues in Nash's treatment of the bargaining prolilem
(postulate 7, p. 159 of [5]) and Arrow's discussion of soeial
welfare functions (Condition 3, p. 27 of [1}). Borrowing Arrow's
terminology we shall say that in the kind of cases\d@scribed
above the minimax regret solution is "dependent gpon irrelevant
alternatives."

>

3. A NON-SEQUENTML GAME

3.1. General Description. Consider the following game: The
player obsérves an odd numbef™ 2k + ]birOf tosses of a coin with
a constant but unknown probability b ?ﬁiﬁgﬁﬁrﬁeﬁ}éf’s“ﬁand q=
1 - p of falling tails), wheteéupon he makes a bet on the outcome
of the next toss, wins ofié dollar if his prediction is correct and
loses one dollar if ineorrect., Each toss costs the player ¢
dollars, and he muSt decide in advance the (odd) number of
tosses he will ghserve before betting, The player is also free
not to enter thb.game at all, This last possible decision we will
call the nulh$trategy, Aside from it, any pure strategy of the
Player coststs of a number k, which determines that he wiil
bet aftéii' 2k + 1 tosses, and a rule r, which determines for
ige?i’set of observations (sample) which way he will bet. A
dnixed strategy is a probability distribution on the set of pure
Strategies {kg,ﬁ}_ P Y

. We shall see that for both types of solutions there is an op-
timal rule ry, which requires that the player bet with the
Majority of previous tosses. This will be called the maximumm
likelihood rule, It will be shown that the Hurwicz solution has
:he Property that for any (positive) cost ¢, and any ¢, nO mMore
han one observation should be taken, In the special case of a
linear ¢ [equation (2)], the solution is: if « 2 2c, bet after one
Observation, if @ £ 2¢ do not play.
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The minimax regret solution is of the form: randomize be-
tween two adjacent values of k, these values being certain non-
increasing functions of c; if ¢ is less than a certain guantity,
randomize between one observation and not playing. However,
if we modify the game by compelling the player always to use
the maximum likelihood rule, the optimal number of observa-
tions will be seen to differ from that in the solution of the more
general game. ~\

3.2. Hurwicz Solution, For any non-null strategy t‘r}&:ex—
pected gain cannot be more than 1 - ¢(N + 1) where I\I'\is the
expected number of observations, since this is the ggi%i if the
prediction is correct with certainty. On the oti}erf hand, for any

¢
non-null strategy the expected gain for p = %"is\ -c(N + 1), hence

the minimum cannot be more than -c(N ).

If the player uses the maximum likefihood rule, then the ex-
pected gain is exactly 1 -c{N + 1) f6f W = 0 or 1, while itis
never less than -c{N + 1). (If the fehder is not immediately
convinced of this latter statement\ie can examine the expected
gain function in more detail inthe next section.) Moreover,

given that a non-nuill strat%%;;is used, the smallest possible

value of N is 1, W%‘gglﬁumonfl%ﬁrﬁéﬁ strategies both
Sgp U(n,s) and f}llf U(nzg] are maximized by using the maximum
likelihecod rule apa\élking one observation, and no matter what
the ¢ and ¢ the{gptimal procedure will have the property that
N0 more tha,n’jen’e ohservation is taken, If ¢ has the linear form
of (2) and-ib-s, is the strategy which consists of using the maxi-
mum %”g’iihood rule after one chservation with probability v

and polplaying with probability 1 - v, then

A Hisg) = o vl - 2¢) + (1 - a) v(-2¢)
) = vl - 2e),

Thus H{(

Sq) i8 maximized by taking v equal to 1 or 0 according
as @ Z 2c or ¢ £ 2, e Vel

3:3 Minimax Regret Solution, This solution is not so easily
ol?ta1ned as the one imposed by the Hurwicz criterion, and we
will only sketch the method of arriving at it, ’

r 1LEt d{k,r) denote a joint probability distribution of k and the
We r and let d(rlk) be the conditional distribution of r given
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Derote the piaver's expected money gain using d(k,r), given
p, by Uld(k,=),p); the expected money gain using dirfk}, given
k and p, by iiidi(r|k),p); and the null strategy by k = -1. Then:

E=)

(4) Uk r)p) = X k) Ugdlrik),p) .
k=-1

Let by and i: be the events of getting i heads and i tails re-
spectively with respective probabilities hj(p) and ti{p)
i=0-..,kas1), Any d{r|k} is a rule of the form:

"For given k, if hj, bet on heads with the probability %i\“'\
and if §; bet on tails with probability ;" >

The maximum likelihood rule ry, is deiined by )&z« Li=1
If d(r|k} diffcrs from rm, it will do so exactly on geriain
events hj (in T} and Ej {#in L), Tt is easily veri}ied that:

©) Vpldlrlk)p) = Uglrm,p) O
N
- 200 - D F 0 - )t - .

It is not hard to show that we camreject as inadmissible all
strategies such thai there is some K \;rft'fll%'h?)] %OB¥, Yor which
T and L are not disjoint. #Phe set of remaining strategies we
will call 8. ~

)
We want that d(k,#) which minimizes the supremum, with
respect to p, of the“gegret:
R[q(k}r),p] = Ulp) - U[d{k,r),p]; where

N
Y Ulp) = d?ﬂﬁ) Uld(k,r),p] -

ﬁ(I.Jl }f’s\attained, for every p, if the player bets on heads
Wh?flhg %, on tails when p = % and pays as small a cost as
PosSible {i.e., k = 0) provided the resulting expected gain is
Dositive; otherwise it is attained by not playing. Thus:
O(p) = max {lp - q] - 2¢, O}.

X Let h(k,p) and t(k,p) be the probabilities of majorities of
eads and tails respectively.

Then for a strategy using the maximum likelihood rule, the
regret is:

p(L,p) = kg;lf(k) p(p) where, for K 20,
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2(q - p)hik,p) + 2kc, (q - p) Z 2¢

ok = {2k + t)c - (p~ q)(hll,p) - t(k,pj), p-q < 2
2(p - q)tk,p) + Zke, (p-q) 2 2o
and
P_1lp) = Ulp).

The function p{f,p) is symmetric in p, for all f, and has.ad\

maximum at two points, say py and qy =1 - py, if ¢ *’{Qq? or
RS
at %, if ¢ £ ¢g, Where O
1 ("}g
g+ ¢ < P <1 -
Y
and cg is defined by \

oo ) \:
c = £
° = 2 fo)(py - fhgt}k,m)

L.e., ¢, is the cost per observatiohfbr which the three relative
maxima of p(f,p} are equal, _ %

Next, it can be shown that one of the minimax regret strate-
gies uses the magimuabdigklitogdorgle, The important step in
the proof of this point ig«the fact that (when ¢ < cg), if the

regret for some strategy s at p = py is less than p(f,p;) then

at p=aqq it is gr a@r’tha.n p{f,q1), and vice versa.
It remains hew to find the optimal distribution f of k, when
the maximum likélihood rule is used. )
Although\0glp) is defined only for integral values of k, it is,
for everyfixed p, analogous to a convex function of k, in that
for eveyyinteger k (and fixed p):
‘:.f'\ P10 - olp) € oy alp) - Pk+1(0).
~Jtis shown in [6 that in such a case the only admissible strate-
gies (using the maximum likelihood rule) are those such that
f(k) is concentrated on at most two consecutive integers. Since
Such a distribution is determined by its mean we can express
the solution by a single number ?{, which will be a function of c.
The approximate value of this function k(c) has been deter-

mined numerically for severa} values of ¢, and the results are
given in Table 1 below,3
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3.4, Dependence on '"Irrelevant Alternatives," We shall now
show that in this game the minimax regret solution “'depends
upon irrelevant alternatives.,"

Suppose we modify the above game by requiring the player to
use the maximum likelihood rule. We proceed to obtain the
minimax regret solution for this case.

The expected pain using f(k) is given by (4) and (5). Again
the negative of Ugfrmy,p) is convex in k for every p, in the
sense described above, and the only admissible f's are those Q)
which are zerc at all but at most two consecutive values of k.
As in Section 3.3, we have obtained the value of the functién 2.

{c), describing the optimal strategy, for various values of c.

The results are given in Table 1, N
Y
Cost ¢ .001 1,002 \005 .0101.020.050
o"\ i

g

for General Strategy Domain | 13,8488 | 4.3 | 2.4 (1.2 | 0.2
% for maximum likelihood 91 5.4 (2.8 |1.8 ) .7

Strategy Domain AN
R S www dbrautibrary org iy

Table 1, Minimax Regr\e"t Solutions for 2 Strategy Domains

We recalj that the two\}games considered differ only in that in
Fhe first game the,piayer is free to use strategies which do not
incorporate theMraximum likelihood rule, while in the second he
must use that)piile. Nevertheless, in the first game the optimal
strategy ig(shown to use the maximum likelihood rule, but with
a dlﬂe}'@»ﬁt humber of trials 2k + 1.

4 t\' ¢

) 4._A SEQUENTIAL GAME— THE HURWICZ SOLUTION

/N
£

. Is worthwhile pointing out? that the essential feature of the
e::l‘}’lcz. solution in Section 3.2 carries over to a sequential gen-
dem;zatmn of the first game. That is, if we allow the player to
of Obe when he will make his bet after having seen any number
not § Servations, it remains true that any optimal strategy w111.

involve taking more than one observation, The proof of this

for general ¢ is practically the same as that for the non-
Sequential game,
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FOOTNOTES

1, In our examples there will always be admisszible strategies,

2, Savage calls this the "loss function™ but econom! sts and
others are liable to confuse this with negative incuiny,

3. Computations for this and the following scction woere made
under the direction of J, Templeton and W. Parrish, N\

4, We are indebted to E. L, Lehmann for doing so to us., {)

7'\
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CHAPTER VI

SOCIAL CHOICE AND STRENGTH OF PREFERENCE"

by
Clyde H. Coombs
UNIVERSITY OF MICHIGAN A
O\
I. NATURE OF THE PROBLEM e\

N\

The problem of constructing a mechanism to aggregate the
preferences of individuals into a social preferende (pattern has
been of concern to psychologists only implicitlyy Papers eX-
plicitly concerned with the problem are us Wy found in the
literature of econcmics and mathematics.*;l%géychologists, how-
ever, in dealing with their measurergeft problems, have built
formal mechanisms which, while ne¥er mentioning "gocial utili-
ty," actually constitute mechanism§ for merging the preferences
of the individual members oi 2 BLOY ) i

The nature of the problem :b:fg"gg %?ﬁé“&%&%‘iwﬁﬁimy is de-
scribed by Arrow in his recéht monograph on Social Choice and
Individual Values [1]. .Osfnsequently, the problem will merely be
illustrated here by ypothetical setting in which it might arise.
Imagine a group of %dividuals who are all members of an art
society which hagvioney in its treasury to purchase some
paintings. Eaehmember of the society has his individual prefl-
erences apfghg the paintings available in the market. The
strength\oi lan individual's preference for a painting will be re-
ferred{d as the utility of an individual for a painting. )

f{"hé problem facing the society 18 to arrive at a mechanism
AQr.merging the utilities of its members for the various pall.’ltlngS
in order to obtain a social choice giving decision as to whn.ch
paintings are to be purchased. Because paintings vary in price
it is necessary that the social preference pattern be Sln:lp].y or-
dered in order that the purchasing agent be completely instructed,
regardless of the state of the market.

*This paper was prepared as part of 2 research project under
Contract Nonr: 37400 with the Office of Naval Rgsearcp. Iam
indebted to my research assistant, MI. 7. E. Keith Smith, for
invaluable assistance throughout this research.
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Defining a social choice function always involves, mplicitly
or explicitly, two value judgments: 1) the relalive weighl to be
assigned to each individual in the scciety and 2) the relalive
weight to be given to each preferential vote. These vatue judg-
ments are sometimes explicit in real mechanisms and always
explicit in formal mechanisms. The social scientist s inter-
ested in making such value judgments explicit because they re-
flect the culture of the group. Also a group is in a better posi-
tion to obiectively select a real mechanism for arriving at a
social choice function when the alternative mechanisms ape
visible and their respective value judgments explicit. "%

There are two ways in which this problem may be studied:
empirically and theoretically. These two approac“}16f's"(’.t;rrespond
respectively to the left and right side of Figure 3°¢h "Some Views
on Mathematical Models and Measurement T#€0ry" (Chapter ID.
The empirical approach would be concerned\with the nature and
characteristics of the social utility arrivesl\a:t by group processes
of different kinds--as for example the g)io‘up decision of a jury in
which there is vocal interaction and:uf)ahimity is required, as
compared with the election of a president of a professional s0-
ciety by a process of preferentigbwoting. With these charac-
teristics as a startdip HFERRE 8Efci3n would be interested
in constructing a {ormal model, i.e., specifying the axioms
which would deliver suchia choice function.

The theoretical app’fc}ctch to the problem of defining a social
utility would start 6ub. with a set of axioms designed to arrive at
a social utility with certain characteristics. This would then
constitute an ':Q\’ra.”ﬂable" mechanism for a group to deliberately
select for thé purpose of arriving at a social utility and it might
be a mechaaism which describes the process already being used
by somégroups.

The hirection of approach in this paper is a theoretical one,
that~ef constructing a social utility which will have certain char-

{acteristics. The particular problem which has intrigued the
wr%ter is the problem of constructing a social utility which will
weight preferential judgments by their "strength,"

This problem is difficult because comparability of utility
measures between individuals is required. Arithmetically
averaging strengths of preference over individuals requires the
assumption of the existence of a common unit of measurement
for utility and then an actual numerical estimate of it. We shall
here d.efine a social utility which will contain the assumption of
the existence of a common unit of measurement for utility be-
tween individuals, but no numerical estimate is required.
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Furthermore, certain of the conditions which data must satisfy
for the assumption to hold will be verifiable.

The social utility to be constructed here is derived from a
theory of psychological scaling published elsewhere {{5], [6]) so
only certain necessary elements of the scaling theory will be
presented, To illustrate the stringent conditions which data
must satisfy to permit construction of a social utility which
weights strength of preference, an experiment was run and will
be utilized for constructing such a social utility, These same,
data will provide an empirical basis for comparing this social
utility with two other mechanisms commonly used by psyglgb@o-
gists for the same implicit purpose. For all these social\utili-
ties, individuals will be weighted equally. Py

S
7%
S

{ &
II. EXPERIMENTAL SETTING )"

The experiment conducted to illustrat’e'ﬁi’e’ proplem and the
scaling theory is the following, The objéts’d'art to be judged
consisted of a series of isosceles triangles with a base of one
Inch, which varied in altitude from\. 25 to 2.5 inches in steps of
.25 inches. The individuals were‘;gz‘esenteql the triangles in sets
of three and asked to judge thﬁ’gbs‘f'ﬁ?ﬁ?&@f“é&f‘mﬁ‘géast pre-
ferred in each set. Every individual was presented with every
set of three triangles. There were ten triangles, so there were
120 triads and there wete 31 individuals making the judgments.
The presentations w&@e'randomized with respect to the fre-
quency with which¢any given triangle occurred in each position
within triads andyith respect to order in the sequence of triads.

Analysis g ~1f:,he data was somewhat different for each of the
Bog¢ial utilitié&’to be illustrated. A general scaling theory, in
the CDHte%of which each of these social utilities will be com-
Pared, will next be discussed.

AN

"\ ¥
Q)

II. THE UNFOLDING TECHNIQUE

As much of the material required by this paper on the subject
of the basic scaling theory has now been published ([5}, [6]) only
a brief sketch of that part of it which pertains particularly 1o the
Problem of defining a social utility will be discussed.

When an individual makes a preferential choice between two
Or more stimuli, the individual will be conceived as possessing
an ideal and the stimuli, the objects being judged, are evaluated
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with respect to their relative distance from this ideal. in the
context of this experiment, an individual is conceived of as
having an "ideal" triangle, at any given moment, which would
be preferred to all others, This ideal would correspond to a
point on a continuum of "altitudes of isosceles triangies with
one inch bases,” This point will he designated the { value of
an individual with the subscripts h, i, and j designaling re-
spectively the moment in time, the individual, and the stimulus
being evaluated. N\

The stimulus is alsc conceived as possessing some degree
of this same attribute, related possibly to its particulag ‘alti-
tude, and this magnitude will be designated its Q vall® and will
also have the subseripts h, i, and j. The differemee hetween
the Q value of the stimulus and the C value of, the' individual,
his ideal, will be defined as his utility for thez%tihmlus, ‘iPhij|-
Thus, in a one dimensicnal case:

1 o NS,
(1) |Phij| = [ Quy '\Ch\1jl
and the postulate which defines the;i‘x{fnxrmation in a comparative

preferential judgment between twa stimuli, j and k, may be
written as follows: N

@ Pu T PERET bRy 11 5
where the symbol > signifies the verbal response ''preferred

tD”, #\J

E?uation (1) cqn&tutes an observational equation of prefer-
ence® and the information obtained in an observation is given by
equation (2).' “Phe left side of equation (1) will be referred to as
the phenctypie’level of behavior corresponding to the manifest
obs‘ervsebehavior, the right side of the equation as the geno-
typic level, an inferred, hypothetical leve] of description, A set
of. p;'e,ference data consists of anumber of simultanecus equations
lmth ‘cn?ly certain order relations given for the terms on the left
{ hand side, The problem is to go from the information given on

the left hand side of the equation to the inferences that can be
drawn about the quantities on the right hand side, constituting
uations,

& solution to the simultaneous eq
atent attribyte underlying or

If there ig g single common 1
generating the preferences of the Individuals, the analysis of the
tribute in the form of order rela-

tions on the Q@ values, order relations on the C wvalues, and in-

formation on metric relations,
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Consider the following illustration, Suppose there were a
single latent attribute with the stimuli (A, B, C, D, E) on it as
in Figure L, and the judges’ ideals distributed over the entire
range.

A I R

]|
el

i
AR AC AD BC BD AE BE CD

Fig. 1 <O
'\

This will be called a J scale or Joint scale hecaqéé"it has
both people and stimuli on it. When an individual tkes a
preference judgment between any two stimuli, then, according
to equations (1) and (2), he will prefer that stimtilus which is
nearer his ideal. K an individual says he pnefers stimulus A
to stimulus B, this indicates that at the-<thme of that judgment
his ideal was located to the left of the piidpoint between these
two stimuli. Similarly, if he says.ie-prefers B to E, he is
located to the left of the midpointf.‘BEB _Hence, the midpoints of
all possible pairs of stimuli partition adlBERT Y O hto seg-
ments. U an individual in the“course of making all his paired
comparison judgments 1"sroated in one of these segments, then
these judgments would beg consistent and transitive and could be
completely represented by a rank order of the stimuli.

This rank ordet bf the stimuli is called the I scale of the
individual and Jeach I scale corresponds uniquely to a segment
of the T scate'bounded by an adjacent pair of midpoints (except
for the twad'and segments). An I scale may be looked upon as
the T seale folded at the ideal of an individual with the stimuli
ranked\in order of increasing distance away from the individual.
'1:138 data consist, then, of these I scales, and the J gcale is ob-

ained by unfolding them. This is the reason for the name, Un-
folding Technique.

In order to unfold a set of I scales it is necessary first to
order them. It is immediately apparent that every I scale ina
set ends in one of two stimuli, these being the first and last on
the T scale. Also, every complete set contains two I scales
which begin with one of these two stimuli and end with the other
and these two I scales are mirror images of each other. These
immediately provide a simple ordering of the stimuli on the T
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scale. The remainder of the I scales are ordered between the
first and last by the simple rule that every stimulus must first
move to the left end of an T scale before it can move to the
right. Two adjacent I scales then differ in that two adjacent
stimuli are in different order. This reversal indicates the mid-
point that was crossed in passing from ane to the next,

Given the order of the stimuli on the J scale there is a nec
essary partial order on their midpoints. For examyple, the mid-
point BC necessarily precedes the midpoint BD., The data,ON
however, yield a simple order on these midpoints and it i this
fact which provides metric information. The hypotheti,c’ii‘l"ﬁata
in Table 1, based on the T scale of Figure 1, indicatel{hat the
midpoint AD precedes BC. This will occur if, andMily if, the
distance between stimuli A and B is greater théh the distance
between the stimuli C and D. If the reverse,w};e true, then
the midpoint BC would precede AD and Iy\W&uld have been

CBADE. AN
I-Scales I\?Iic(iisgir?fs.x’ ;' "i\detric Information
I ABCDE \\rW\v_dEr‘Ba‘llrj%j’bl—ér*y_m-g_in
I3 | BACDE Q’i "
I3 | BCADE .\xjx AD
Iy | BCDAB\ BC AD,BC => AB>CD
I | CBDAE" BD BC,AE —> CE >AB
lg | CDBAE AR BD,AE —> DE »>AB
Iy ~NCDBEA BE | AE,cD —> AC >DE
|Jg* | cpeBa cD BE,CD —> BC >DE
s | DCEBA .
Ijo | DECBA DE
111 | EDCBA
Table 1.

_ The 1 scales which lie between the first three and last three
in a s.et.are the ones which provide metric information. The
metric information contained in these data, where n = 5, are

given in Table 1 and illustrated by the partial order in Figure 2.
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It can readily be shown that

BG-7 metric relations on the magnitudes
| of the intervals bounded by the

! E . . . . .
IMJ‘E" midpoints of pairs of stimuli, fol-

i lows from information about the
-g\-“g metric relations on the distances
L between stimuli.2 The results of
o) such an analysis are contained in

Table 2 which gives the informags\
tion on how large each interval is
in terms of the distances betwéen
stimuli, for this example{ Figure 3
gives the ordering of these intervals in relative magnj{uae.

Fig. 2.

Interval Magnitude %
1 . '\.;
—— 4 \
i BC &
2 Bt ¢
I3 [ IR
2 :f:’ \;r_dlbr‘aulibrar‘y_m'g_in
I EB-CD Iy
RN |
Iy v
A\ 2 -[7
16 x:\": BE—E
\i"\;" 2
RN I5 =13 = Iip
SR AB 3
AN 5 Fig. 3.
) < 2 g
N\ R
Ig BC-DE
; 2
| Iy DE
2
lio (o2,
L 2
Table 2.

Note: I4+15+Ig-—2c--=12—13

%l
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This hypothetical data has been presented in onicr io provide
some general backprovnd on the Unfulding Teehnigue and to in-
dicate some of the conditions the data must satisfy to provide
experimental evidence for intep- individual compnruability of
utility.

IV. A SOCIAL CHOICE FUNCTION BASK D Q

ON STRENGTH OF PREFERENCE ¢\
¢\

Let us now look at this model from the point of vi.crﬂﬂ'\Uf con-
structing a social utility, The mechunisms usually“wkcd for such
a purpose involve the relative frequencies of the Palred compari-
50n judgments. In other words they deal with.ﬁ?e phenotypic
level of behavior. It is proposed here fo cohgtfuct a social
utility on the inferred genotypic continuumh)

A social utility may be constructed baded on the value judg-
ments of giving equal weight to eachyndividual, but weighting
each preference by its g trength,'! defined by equation (1), Such
a social utility would be the arith:?rj{etic mean of the individuals’
utilities for each sfimulus, kaujé‘, the social utility for stimulus
i would be: www.d brauﬁlﬁrary.or‘g.in

1
(3) |p &1 TN 2D [Payl

+8J

P4\

These quantities};nnot be arithmetically determined because
the preferential jidbments do not give the absolute magnitude of
the strength ohdhé individual's utilities for each stimulus but
just their relative magnitude. Given certain conditions, however,
these quaitiffes, [P|..j, canbe simply ordered over j.

The eorditions required are the following:

'llfThe preferential judgments must satisfy the conditions for
m\;“'a single latent attribute, i.e., the I scales must unfold into
\ a gingle quantitative J scale.

2) The judges must be distributed symmetrically on the J
scale,
3) The existence of a

common metric or thjs T scale must
be assumed,
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if one requires that a social choice function weight the strength
of preferences.

With these assumptions, it follows that the quantity, ]PI j
the social utility of stimulus j, is the arithmetic mean of the
absolute deviations of the individuals about stimulus j as an
origin. In other words, the social utility of a stimulus is the
mean deviation of the individuals about stimulus j, as the origin.
From statistical theory, we know that the mean deviation will
be & minimum about the median and will be increasingly large\
as the origin deviates from the median. Hence, the median in~
dividual will be that origin about which the guantities |Pfs 3
will be a minimum for any j. So, the rank order I scalé of the
median individual in a distribution will be the rank erder of the
minimal values of P|. . i over j and will cons;'itu:te a social
utility which has the characteristic of being theJezst disliked.
If the data satisfy the necessary conditions \which are very
strict, a simply ordered social utility Whigh,‘WEightS strength
of preference is then obtained.

These assumptions are very striugé&. For example, if the
conditions are satisfied, then if opéuhdividual's ideal is A and
he dislikes B very much, and a,nbjiher individual's ideal is B,
it necessarily follows that the. Seeendbindividuay dighikes A very
much, and in fact his dislikelfor A must be equal to the first
individual's dislike for B

Leo Goodman® hasAirought to the writer's attention the fact
that Duncan Black {4]“Has pointed out that if the condition of
single peakedness.is‘satisfied (implied by equations {1) and (2}),
then the first_cheiee of the median individual is, in fact, the
most preferréd Stimulus as obtained by the system of majority
voting, .

o
Z7\%

O

- V. RESULTS OF THE EXPERIMENT

™

4 .\' 3
’Real data usually do not result in 2 set of 1 scales which will
unfold into a single quantitative J scale. This scaling th‘eoryhis
very vulnerable; it does not necessarily yield unidimensionality,
for example, but rather sets up conditions which the data must
satisfy in order to draw the inference of a unidimensional latent
attribute. It is to be expected that judgments of individuals will
contain error. Even in the case of a single latent attribute one
can conceive of an individual vacillating ox being uncertain as
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to precisely where he stands on the continuum. Over a number
of judgments, an individual may actually have a distribution of
C values or ideals and, for judgments at different Limes, be
located at different places in such a distribution.

By using 8 method of collecting data which requires replica-
tion of a paired comparisecn, as does the method of irinds, one
can determine the percentage of times an individuxl's ideal was
on either side of a given midpoint. This permits a partial Te—m
construction of an individual's distribution of ideals.

This experiment on the aesthetics of isosceles triangl&sfin-
volved 10 triangles, Hence, there are 45 midpoints and“tite ‘Con-
tinuum is divided into 46 intervals corresponding to, a}s‘ét of 46
I scales, a\ )

The ten triangles used in this experiment ditféred in altitude
by increments of .25 inches, so the entire range of differences
in altitude was 2.25 inches. This continuum \Déing broken info
46 intervals, means that on the average tigse intervals repre-
sented a physical range of .05 inches g altitude. It is perhaps
to be expected then that individuals wowld vary over a number
of adjacent intervals unless they cuid discriminate aititude
very well and knew precisely whaf altitude they most preferred
and didn't vary fromit. d ftawdBiesondr ghis practically all the
subjects did vary on the contihuum. Hence, for any pair of
stimuli, the individual's gheference was taken to be that member
of the pair which was mdst frequently preferred. This would
correspond in an ide\l\case to the median position of his distri-
bution on the J scdle,

This experixggénf was conducted with students in two graduate

courses at the\Dniversity of Michigan, a total of 31 students,
This is clearly

farly not enough subjects to have some in every inter-

val of the\J scale, but the results will serve as an illustration
of the Unfolding Technique and the problems one has in arriving

at this social utility from real data,

\The preferentia] judgments of the individuals are summarized
In/Table 3. In the first column are the intervals numbered from
1 t0 48. In the second column are 1 Scales obtained in the data
which all satisfy a common quantitative J scale with the stimull
in order from A to J. Fach cccurred with a frequency of one.
In t‘he next column are listed alternative I scales all of which
satisfy the same qualitative T scale, with the stimuli ordered
from A to J, but the metric relations implied are not the same
as those implied by the I scales in the first column. In the col-

umn headed "Others" are listed those | scales which do not
even satisfy the same qualitative J scale.
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‘ I Scales ! Alternate T Scales Others
1 |  ABCDEFGHI JIHGFEBDAC
2 | AITHGFBEDC
3 GHFCDIEJBA
4 EDFGACBHI
5 AJBICHDGFE
6 GFEIHDCIBA
|
T . LA
8
‘ Oy
‘ A%
« N\
CDBEFGHIJA . N
DCEFBGHIAT | "
DCEFGBHITA D
, DECFGRBHITA L
DECFGHBITA N
DEFCGHBIJA EDFCGBENA
DECEGHIBA
EFDCGHBITA
EpFee”iBsalibrary org.in
EFGDHCBIJA N
FEGDHCBITA.\
«¢\J| EDFGHIICBA
\\
GEBHDICBIA
PRC4 FGEHDIICBA
,\\GFEHIDC.]'BA
 \ “GFHEIDCTBA
Q° i
g\ ! FGHIETDCBA
3 3 Y
HGFEITDCBA GHFIEJDCBA
HGIFTEDCBA
HGITFEDCBA
IHGIFEDCBA
4% | ymcFEpcBs | 1 ]

Table 3
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If we look at the seventeen cases in the fir=t culumn (the only
ones which appear to satisfy the conditions for arrivine at our
social utility) the I scale of the ninth individual wionld constitute
a simply crdered sociat ulility which weighted sirvensth of pref-
erence. This is the I scale in the twenty-fifith interval,
FEGDHCBITA.

This mechanism for achieving a social utility has cortain
sericus limitations, While on the one hand, some of us may find
it "satisfying™ to construct a social utility which weishtts the
strengths of preferences, this has only been done for the'spgeial
case in which there is a single latent attribute under1ying indi-
viduals' preferences, and with strong additional assupantions.
While some of the problems involved in extendir}gihlé mecha-
nism to cases with multidimensional latent attribiffes have been
solved (3], additional problems remain, suclt 'as}, for example,

determining a median point in a multidimeasional space (7] and
also criteria for unfolding. O

Let us turn next to another mechani:’s}n for arriving at a
social utility, O

W
a .

VI A SOCIAL URHITYr Wi eCrT B WEIGHTED EQUALLY

In a study by Austin dnd Sleight {2) on the aesthetics of is0s-
celes triangles, they sere interested in the so-called golden
ratio of altitude to Bage, 1.62 to 1, which is supposed to be the
most aesthetically pleasing. They used twelve triangles, 52
subjects and thelmethod of paired comparisons, They deter-
mined the bepweent of times each triangle was preferred to some
other, and-thereby, though not explicitly, constructed a social
utility.\'\ € results they reported are illustrated in Figure 4,
copied from their articie. The rank order of the triangles on
thqégocial utility so constructed can be read from the figure and
1S EFDGCHITBKLA. (The stimuli A through J have the same

€signations as in the experiment reported previousiy; stimuli

K and L are two additionaj triangles they used, with altitudes
of 2.75 inches and 3 inches, respectively.)
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Their data are not repg'rtei‘l in such a manner that the Un-
folding Technique could.be‘applied to permit constructing a
social utility whick %i\igfited the individual preferences by their
strength. It is evident, however, that their social utility may
also be obtained-byfolding the I scale in the neighborhood of
stimulus E, afd*in fact is from the 26th intervalof a J scale
with the stimli going from A to L,

The valye judgments underlying their social utility are the
following™" 1) every individual is given an equal voice; 2) each
prefefential judgment {dyadic) is given equal weight. Such a
SQ(fia\i utility appears on experimental grounds to be a folded J
‘scdle and on theoretical grounds is sensitive to both the metric
relations and the distribution of judges on the [ scale, It is not
yet ¢clear whether these two effects on the social utility can b?
distinguished, to permit unfolding it into a J scale with metric
relations.

The data from the first experiment reported here may also
be used to construct a social utility based on the same value
judgments as the Austin-Sleight social utility. The result of this
1s a social utility with the stimuli in the order FEGDHCIBJA,
which is one of the possible I scales which could occur in the
26th interval of the J scale.
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They make an observation about their data which ig a very
significant one. They observed that very few subjects had their
strongest preference for the stimuli which were highest on the
social utility. Most of the best-liked triangles were at the ex-
tremes. While many subjects preferred maost the triangles at
cne extreme, many other subjects had a definite diglike for
these same triangles and made first choices at the other ex-
treme. When the data are combined into a social utility, the A~
"average" preference for the extreme triangles drops. The
result is that the social utility constitutes not necessarily the
order in which the triangles are most preferred, but pathe? the
order in which they were least disliked, The triangles™in the
middle of the J scale were not disliked by any of.fhe subjects
and these are the ones which come ot highest @nthe social
utility, This might provide a general chara¢terization of the
social utilities arrived at by the politicai Qechanism of democ-
racy when there are more than two stim@ili*to be ordered.

In the context of aesthetics, the so;c}lled golden section ratic
of altitude to base, 1.62 to 1, is not fisfessarily the most aes-
thetically pleasing, but rather is lgast aesthetically displeasing

~

over a number of individuals. Fhese are by no means neces-

sarily the same thi\ng,w‘dbraql'ibpary.org.in

VII. THE SOCIAL ‘U%ILITY OBTAINED FROM THE LAW
OF BOMPARATIVE JUDGMENT

We have new/éxamined two social utility mechanisms based
on different ){alue systems and it will be of interest to examine
a third which'is widely used by psychologists, In 1927,

Thurst‘ “published his "Law of Comparative Judgment” [8]

s a mechanism for constructing a scale from paired compari-

sopjudgments. Insofar as the formal and computational char-
{Aeteristics of the Law of Comparative Judgment are concerned,

tifere is no distinction between judgments as to which of two

stimuli is preferred and which of two stimuli possesses more

of some property. From the point of view of the Unfolding Tech-~

nique, however, these are distinetly different, It is only the first,

pertaining to judgments of preference, which provides another

mechanism arriving at a social utility,

In the notation of the Unfolding Technique the postulate under-
lying the Law of Comparative Judgment is that given by equa-

;ion (2} which for this purpose can be put in the more convenient
orm:
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(4} [Phij| - IPhik!S 0 if and only if ] >k
If ezch of a number of individuals makes a judgment of prei-
erence petween each pair of stimuli, the percentage of times
i ® k ig obtained, This corresponds, by the postulate, to the
percentage of times the difference, rphij| - ]Phik[s was less
than zero over h and i.

The distribution of thege differences has mean [P|..; -
.« i and variance o . Making the jadgmenty
k [Pl - 1Pl k g Jace

that these differences are normally distributed, then we may.’)
write: O

(8) iPl..j- P

|p

'.k-Xjk U’P‘..j—|P':€.I{ \

"

where Xiy is the normal deviate of a differencelef zero, For
each pair of stimuli (j, k), an observational.egiation may be
written as above. The set of simultaneoﬁg};u&tions so obtained
is insoluble, as there are always maopé parameters than equa-
tions, Thurstone's Case V of this Lafv{{ wf Comparative Judgment
eliminates the majority of the parameters by assuming that the
variance of the differences is comstant for jafairs Ejdk)‘ It may

T abraul B org,
then be set equal to one and qseﬁ as the unit of medsure. Thus,

one has (g) experimentalliy"independent observations and solves

for n - 1 parameters:{ a.&cale value for each stimuius, with one
set equal to zerc toprovide an origin.

When this progédire is applied to preference data, a numeri-
cal scale is obfaihéd which may be regarded as the attribute
"preferabilit§))4nd the stimuli are points on this scale.

It is of fnferest, now, to regard this mechanism as one for
arriving{dt'a social utility. From this point of view, it is evi-
dent thab the value judgments in this mechanism are as follows:

£\
“1)}each individual is given an equal voice; o
\2) a preference judgment is weighted monotonicaily with its

popularity,

The latter statement arises from the fact that the normal curve
is used to obtain the quantity X; in the observational equations.
As the percentage of judgments for one stimulus over another
deviates from 50%, the normal deviate for a zero difference
moves increasingly farther from the mean of the distributm.n
and the increment in this distance attributable to each vate in-

Creases, on the average,
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The data cobtained in the experiment reported here on pref-
erences for triangles could be used to secure this zocial utility
also., Because the Method of Triads was used to collect the
data instead of the Method of Paired Compariscns, each indi-
vidual replicated each judgment eight times. So the eight re-
sponses of each of the seventeen judges were labulated to de-
termine the proportion of times one stimulus was preferred to
another. The social utility so obtained is piven in Figure J.7%
may be noted that the order of the stimuli on the social utility
is the same for the Law of Comparative Judgment soluifou'gnd
for the social utility secured by weighting each vote a@ually.
This will not always be the case but will be dependeat ‘upon the
distribution of the judges' ideals on the J scale, ‘ ’

\\
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Fig. 5. Law of @omparative Judgment Solution
x“.j;p Triangle Data.
-

It is evident from this development that the social utility
arrived at by Austin and Sleight has some of the characteristics
associated ,(igh the judgment that the distribution of differences,
lphij | ';'L‘E’hik|» is rectangular in contrast to normal. It has
probabQ\been noted that the designation of the shape of this dis-
‘cﬁbutﬁon of differences, both here and for the Law of Compara=
tiyeJudgment, was referred to as a judgment and not as an

\”“a§sumption. The reason for this is that in the context of defin-
ing a social choice function, there is no natural "reality™ but
one which is constructed by the decisions and value judgments
0@ the group. The shape of this distribution of differences
simply corresponds to a value judgment on the relative weights

which should be given to individual preference judgments to
merge them into a social utility,
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VIII, IMPLICATIONS FOR EXPERIMENT

It is evident that as wide a variety of social utilities can be
formally constructed as there are varieties of value judgments
on the weighting of individuals themselves and the weighting of
the individual preference judgments,

A problem of interest to the social scientist is to match the
live mechanisms of particular groups with one or more of the
various formal mechanisms in order to make explicit the value
judgments that characterize certain operational procedures that
may be used to arrive af a social utility. .\:\

For example, it would be instructive to analyze the implicit
value judgments underlying determination of a social ut111ty by
& jury, in which unanimity must be obtained and there is open
discussion. This could be studied in contrast tqﬁmse obtaining
for a legislative group, with discussion, but gof\requiring una-
nimity on the social utility. \

It would be interesting to know how thﬁlﬁy political leaders
decide on order of importance of itemg~in the party platform
differed from the mechanism that chdracterizes the jury. Other

variants, and experimental problems, are numerous and obvious.
ww*w dbraulibrary org.in

FOOTNOTES

* increases, the individual dislikes the

1, As the quantity |Pm]
stimulus more,

2. Ci. Chapter. V\’Ii of [6].

3. Personal.rx:mimunication.
\:»\:.
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CHAPTER VII

ALTERNATIVE CALCULI OF
SUBJECTIVE PROBABILITIES

by Q.
Stefan Vail O\
UNIVERSITY OF MICHIGAN O

1. THE NEED FOR AN INVENTORY\"
OF ALTERNATIVE CALCULI\Y
AY;

The traditional theory of choice state thit an individual's
behavior under uncertainty may be explained on the basis of two
intervening magnitudes, utility and subjective probability, and
that an exact analogue of the mathe’ginatical theory of probability
can handle the problems of behakfor under uncertainty.

If we think that the traditional Calctbigwversimplifies reality
and provides a spurious nofm, we ought to review other existing
¢alculi and other existingshorms or invent new, richer but work-
able concepts with wh:'\dh’to axiomatize theories of choice under
uncertainty, \

An inventory ofalternative calculi will serve to loca_te tpe
!_Exact area of g given experimental or theoretical contrl‘butlon;
it may 1tself§é§éest further theories and further experiments;
and it maﬁl\\x‘éake some contribution to the metaphysics of proba-~

bility,
The-&dnce King are not merely "additional
, ¢ pts that we are seeking ] Ac
varigoles, " inglyencing” utility and subjective p‘fo'f"".‘mhtlf X lThf’y
ave to be entirely different constructs, ?Xhlbltlggbt_l?t ogi-
cal Properties neither of utility nor of subjective probability.

2. THE HORIZON OF CHOICE

] i t apart the

This Section | . ion. Its purpose 18 to se ’
0 8 £5i0M. i

Qestion of thenhlc:r?zgrllg;fe ehoice, which is usually bound up with
i o ries of choice underuﬁzigtaslfﬂérnative choices or
€N a situation i ves Il _  of
roug Out::lzrt;zz “‘l:;lmight find it fruitful to use a CONcep
=
a7

nume
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L) We may first divide un
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"summarization” or "polarization' inte 2 more compact and
graspable set, perhaps—I would venture—typically into a dilem-
ma. Dilemmas arise in fact all too frequently out of logically
more complex situations, (for instance in multi-party polities,
3-and-more-person games, arguments, attiludes} o that their
genesis deserves special attention. This polarization mipght be
characterized by two seemingly antithetical axinoms: first, that
the derived set is highly dependent on the composition of the
parent set and, second, that once the derived set has crystkllized,
choice is independent of the alternatives blacked out. Imaddition
we might have axioms to describe which of the candidffetalterna-
tives enter the derived set; for example: 1) The defived set con-
sists of the extreme elements of the parent set; {IF, The derived
set consists of two alternatives representing the»" average value"
of the set of favorable alternatives and the '~'ﬁ;erage value" of the
set of unfavorable alternatives., Either axiom would explain the
tendency toward the dilemma, \\

When to each alternative choice isfa¥sociated a set of pos-
sible outcomes--say in the form ofan interval—the ordering of
the choices presents additional problems. We will need a device,

such as an indiffe‘;\,e\l}cedﬁ}aﬁ’ "ﬁi}ggc}]opefﬂnits a complete ordering
of the alternatives? ™ X# lnalﬁgre ce r%ap with metric relations

between indifference-sets¥s equivalent to a utility function,

) ‘..’\
&\\é’N INVENTORY OF CALCULI

A calculug0funcertainty is a set of rules governing a proc-
ess, fvhether.\conscious or unconscious, that transforms real or
imagined mcertainty into decisions, Under the term "decisions”
are ' hshmed such diverse activities as sorcery, gambling, and
the.laylng down of the principles of a mathematical theory of
probability,

W : Aiv certainty calculi into those involving .
echanical choice' versus those that embody ""genuine decisions.
3.1. Mechanical choice, Mechanical choice is a very wide-

spread phenomenon, because it is economical of time and free of

the agony of indecision, Some of it is conscious. as for instance,
the reh..emce on ‘rules of thumb, magic or sorcer;(. T,Jnccmscious

::lzcgan;gzl c‘hou?e is exen}plified by carry-on-as-usual activity

e ¥ ’ avior in a lear_-mr‘lg‘situation. All uncertainty calculi

In the course of an individual's life to be replaced by some
mechanical process; the Crowning example of such a mechanical

Process is an elaborate theory of mathematical probability and




SUBJECTIVE PROBABILITIES 89

the theories of tatistical decision which it supports.

We will leave behind sorcery and the use of rules of thumb,
merely noting that they seem to be quite widespread even among
literate, sophisticated people, even when the stakes are impor-
tant, and even when other calculi {(such as subjective or objective
odds) are available, We possess no predictive theories for this
sort of behavior.

Of learning we have several well-developed theories, usually
cast in stochastic terms, with the two great virtues of being op-
erational and predictive, These theories of learning are weak jn >
two respects: first, they cannot explain the differential effeets
of different outcomes unless we superimpose on the learnj\ﬁg‘ }
theory a utility theory; second, learning theories are self-
contained, that is, they do not predict when and how a(given in-
dividual ceases to act according to the learning pa\ttgrn, say,
upon having an insight: e.g. if he thinks the stoghastic process
te which he is exposed is random, if he looks Jer 2 pattern, or if
he suspects foul play. y /

The factors likely to upset the stable pracess of mechanical
choice are: a new context, a new propigu, a new insight, or a
high degree of realism of the decisjon'situation and the relentless
approach of a deadline for actiam'w.Hbraulibrary,org,m

We possess no detailed thepryf {except what can be horrowed
from the theories of the "thresfiold"), concerning the manner in
which a mechanically choo§ing individual is forced to make
genuine decisions., He,{8) resumed to act ""as usual' unless
something "'important\has happened, is perceived, and demands
a new decision,

Theorists apd@xperimenters recognize that behavior varies
considerably, Qith the degree of realism of the choice situation,
and we posséss comparative sets of observations to substantiate
this gues%l"if we possessed a measure of this effect, in terms
of, Say;’fthe frequency distributicns of 2 certain set of responses
to g givén choice situation we could, of course, use this informa-
tioh“to refine or interpret other data. A more interesting project,
however, would be to determine to what extent people sincerely
trying are in effect unable to make genuine decisions when they
don't have to; whether they shift into different sorts of subjective
probability calculi when they play for keeps, or for chips, in im-
agination only, or in other values of the degree of realism,

Formally akin to the degree of realism is the question of the
deadline or of the revocability of a decision. K t is the interval
of time between the present and the deadline we might expect a
priori results analogous to the effects of the degree of realism
of the previous paragraph. Here, however, we would have more
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possibilities than in the former case, because nearly every de-
cision situation has to undergo a sequence ol phases with respect
to the deadline. If there is, as time passes, a tendency to re-
evaluate the choice, the pattern of the swerving itself will often
influence the final choice. How often did our deadlines not catch
us unawares in a last minute antithesis to which we had not
"really" meant to commit ourselves ?

3.2, Genuine decision, (A) Subjective probability functiofs,
The various concepts to he defined, e.g. "degree of belieL, "
"psychological probability” or "perception of frequencw\all
refer to contemplated events, more precisely, to profogitions
concerning contemplated events, PAY

A point to be made at the outset is that these é{’ents do not
have to be contemplated as occurring in the futhré, Thus, our
area of study will include not only the case\of'w gambler betting
on a horse to run tomorrow, but also the ease of a student who
answers "yes'" or "'no" to the question ‘{hether "Moscow is to
the east of Constantinople," and alsgMhe’ case of a scholar who
decides to accept that "the writer of Shakespeare's plays and
Francis Bacon were the same person.”

. www dbraulibkary org.in

(a) Existence of a belief funefion. An individual is usually as-
sumed capable of vaguély ordering outcomes as "more likely"
and "less likely," And we\will have to make different further
assumptions for the itgd?ﬁduals who ascribe to nature passivity,
constancy, and randdmhess and for those who animate nature
into a friend or iptp an adversary. The individual who considers
nature passive glikelihoods unaffected by his own aspirations or
actions) is not: r\lecessarily better informed or more rational than
the S“PEI"S,t‘i‘t\i‘ous kind, for the former may, for example, fall
brey to'thefallacy that a run of heads must be restituted by tails
m.th?zzlg;é?c_t toss, or he may magnify (or simply like better) cer-
t31!1\~QddS. The individual who sees nature as an ally or as an

4 3‘{‘1‘31'531'3?, though possibly tragically misinformed, may be able
t9'make choices that appear perfectly rational when we view his
situation-—as he does—asg a game of strategy,

(b) Determinateness of the belief functions. Whatever denomi-
nations people give to odds, "none,™ "'slim," "questionahle,™

"even," "fajr " "good," "excellent," and so forth, are usually
postulated as simply ordered and as i i i 3

the constitution of the set of events to which they are ascribed.
Hov._:ever much haziness veils the boundaries of that coarse
grained classification, we ordinarily expect asymmetry, and




SUBJECTIVE PROBABILITIES 81

tranaitivity to be satisfied. In a more general postulation we
should expect them to be satisfied in probabilistic terms,2 with
the reyuirements becoming less and less rigid as the number of
alternatives increases.

In addition io the ocrdering postulates it might prove usefulon
cecasion Lo postulate concerning "metric relations' that when-
ever we are given an n-fold classification of odds, it is easier
to distinguish between classes removed from each other by r
places if they are astride the equal-odds class, than if they ap
hoth on the same side of the equal~odds class. Such a "bunching"
could be used to derive the tendency toward the dilemma, (neted
several paragraphs ago. N\

(¢) The nomenclature of the belief function, We shotld not,
in genéral, expect the terminology to mean the sane things and
to retain its simply ordered properties over hetfér\ogeneous
events which are unrelated to each other in prdinary decision
situations, and the same can be said, in pa.?ticular, about the
relation that these denominations bear ¥ Wumerical odds.

3.3. Genuine decision. (B) Probabilities—subjective, ob-
e ig a sche-

jective and rmathematical. Th%@éﬁﬁﬂ]ﬂﬁﬁ%ﬂ%}?g} i

B

matic representation of the relations between'the concepts that
this section discusses,3 «3%

e

2

imx\
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The rows bear the labels: mathematical, psychological, ohjec-
tive; the columns refer to the number of cccurrences of an event,
The cells are named A through I. Entry J is outside the row-
column scheme of classification.

I assume that we understand what is meant by events similar
in relevant respects; this notion, or the notion of a set, 5r some-
thing equivalent is indispensable to the classical dpproach to the
mathematical theory of probability. On this basis, suitable defi-
nitions of a "measure of a set," "ratio of measures,"” ete. allbw
us to fill cells B and C in the table. Let us call this entidy o
or "mathematical probability’ or "theoretical probability, ™/

If we want to make entries in A we will discover that'to be
satisfactory, they have to be defined in terms of the entry #: we
seek "relevant characteristies" of the single-ocgl@rence event
in question, which will enable us to assign this{éyent to one or
more classes of the kind that underlie .

Let us skip for a while the second rowsofcells and enter an §
in cell H. This { stands for the objective ‘felative frequency of
an empirical event; it presupposes knciwledge whether the event
did in fact happen, a suitable operative definition of time inter-
vals and an objective method for"e'éﬂnting occurrences and non-
occurrences, It is o&m-dhﬁﬂtl}%‘éﬁhﬁﬁ%-fﬂl in cells G and L

For the second row of cedlg*one can think of several a priori
distinct conceptual entitie&® T

4. The psychologic 1.,p‘\attern which dictates that we postulate
such-and-such Dropeﬁes for u ; the thing which makes us con-
fident that some particular set of axioms for a theory of mathe-
matical probability provide the best model of the world around
us; the procggs/which enables even a child to state with assured-
ness that fon'd fair coin # (heads) = (tails}, I cali this proc-
€ss a "pro-theory concerning u."

) b, '.’Stp;':}e'times the faculty for discerning proper values for H,
('glg‘oi)er' in accordance with the Principles provided by the pro-
theoYy) is dimmed by haste, by inability to perform complicated
computations, or by forgetting essential data of the problem,
For example, it may be, for some people, very hard to say whe-
ther i (either a spade, or a King, or a queen, or a jack in 2
single drawing for a pack of 52 cards} is greater or less than,
;’;c‘igual to # (a black card in g single drawing from a similar

Let us denote these estimates of 4, Wi and call them
"perception of mathematical probability 4." In general Y
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will be not only a function of #, but a function of the particular
event E, whose g is under consideration; it will be a function
of the wording of the probiem, of time allotted to its solutions,
and so forth. Part of my experimenting {(reported in the appen-
dix) relates to this function ¥.

c. Given an event with objective frequency f, we will call ¥f
the percepticn of this frequency, or the impression we obtain by
being exposed to the occurrence of a finite repetitive event. Ex-
periments by Lawrence, Estes, and Bush and Mosteller deal with
this entity. .

d. Now it"may happen that an individual bas certain cenfidence
in the occurrence of an event, This confidence may pr\ﬁlay not
have arisen from a conscious attempt to calculate §he, 4 (if any)
of the event, or to observe the I {if any) of the event, * Let the
letter B stand for this degree of belief, and, let u$ mark ir our
table 81, By, B., for we have a priori no Way oF knowing whether
the same laws apply to all 8's regardless\of the index, It seems
that inferesting problems in economics¢{such as business invest-
ment decisions, oceupational choice,darge household expendi-
tures) fall under 8y or 8, with n, 4.Pather small integer.

A scheme such as the above.‘is:'too transparently formal to he
readily acceptable. We must Editviiiua durssivespinits useful-
ness, AN

It may be objected todhe column-wise classification that the
classes are not correlative: Column 1 is of a different sort than
the other columns ‘t{ééahse statements concerning truly "unique"
events are not sfaternents about probability. This is precisely
why no symhol’associated with our ordinary mathematical theory
of probability has been entered in Column 1. Truly unigue events
cannot be.,rg\dhced to intersections of sets of repetitive events. It
is certk»iin%hat Column 1 differs very radically from the other
two ‘in‘%rms of our ordinary mathematical theory of probability;
b}lkfft)m the point of view of the experience of unsophisticated

~peaple it is Column 3 that differs most radically in kind, simply
because it concerns something ideal and beyond experience, The
column-wise classification was meant as a reference device,
until we have empirical reasons to pelieve one or hoth of these
distinctions superflucus,

We may ask, is not the comparison between statements belong-
ing to Column 1 and those belonging to Column 3 somewhat ir-
relevant? Coin-tossing, even i it happens only once, still be-
longs to Column 3; whereas guessing what the capital of Traq is
belongs to Column 1, Column 1 contains statements about sets
containing a unigue element for which probability is inapplicable
almost by definition.
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Strictly speaking, the tossing of this penny, now, by me, etc.,
is a unique event, a set consisting of one element. Strigﬂ_y
speakKing, it belongs to Column 1, and if you maintain that it
really belongs to Column 3, you do so because you happen to
think that this, now, and me are irrelevant "accidenls’; your
theory of probability tells you to abstract there rom., Now, it
would be interesting tq find whether certain people do in fact
think of all instances Gf coin-tossing as 80 many one-element
sets while other kinds of people think in more generic terms,\
pooling all such instances into an infinite set belonging terCol-
umn 3. A\

Similarly the distinction between Wi and ¥f, asidedrom that
suggested by purely verbal analogy from the distifCtion between
# and f themselves can in certain cases proveOfreal behavioral
significance, Recause a person equipped with(a pro-theory or
with a theory concerning # might or mightdot be able to obtain
(by computation, or by any other procesgsalowable by hig pro-
theory or theory) values for u "correct!or "distorted" with
respect to criteria defined by his thedey. Now, quite independ-
ently of his ability on this score, hig*perception may or may not
distort the objectively measurapie f s,

Whether as a rulevps e WigPmy %% He tween the Yu and ¥f
in practice so as to justify aNair-splitting task of classification
should be settled empirigally, However, my impression is that
many people are vagueljraware that observable chance events
approximate the "tfue ‘thathematical odds" perhaps only "in the
long run'; some pe%]e are not at all surprised to observe ""runs
of luck (significant’fluctuations in f as a function of the number of
trials) and yet\tieir confidence in the appropriateness of their
favorite prpp\.albility calculus remains unshaken, For such people
We may\gay that they do distinguish frequency from probability,

and it §duld be reasonable to expect them to exhibit correspond-
ing.gi'fferences in behavior,

’3.4. Choice on the basis of u, pu, B, f or ¥f. Now that we
posSsess a large assortment of indicators of uncertainty we must
ask the further question, how are these indicators transformed
into choice?

First we must acknowledge the possibility that choice is in-
dependent of the indicators' "intrinsic" value. To the extent that
peo_ple simply like certain odds better than others and choose
actions accordingly, they fail to utilize the "intrinsic" (say the
order, the metric, the humerical) uncertainty properties of the
Indicator. K, as Ward Edwardst has reported, the phenomenon

Li
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of pure preference for some odds is widespread, it will over-
whelm the subtler effects of many true calculi.

There exist numerous true calculi of indicators of uncertainty
Alongside the indicator of uncertainty they carry a second indi-
cator, of goodness, (utility). All such theories contain an addi-
tional device, the "indiiference map" which establishes "exchange
ratios’ between utilities and probabilities.5 Choice maximizes
the "psychological product’ of these indicators.

These theories {with the exception of Shackle's, op. cit.) cen-
tain "Boolean postulates' that permit easy reductions of the
probabiiity of complex (alternative, conjunctive} events Lo\
simple probabilities, and permit a direct application o{ “the Taws
of mathematical probability to subjective probabilities,

With thase comments I shall leave aside the discussion of the
traditional two-parameter calculi, They are dg{fg'loped intc well
Known axinmatic structures rich in theoremé&apd in normative
implications. Let us return to our classificatory table. What
about the column-wise distinctions?  ,%¢

Does it make any appreciable diffe.fé}ice in behavior whether
the event contemplated is helieved té belong to the n =1, n = 2,
n=3,...etc, class?

I think the answer to this i sqiualibed yesg iThe distinc-
tion between values of n helps make sense out of "nonsensical"
behavior in most experimerital games. Almost all critics of the
Mosteller-Nogee applic*é;tion of the von Neumann approach to
the measurement of atility have remarked that the choices made
by the subjecis be:?%en the odds offered by the experimenters
would have been different if the experimenters had warned the
subjects thaftheir choice would actually be enforced once,
twice, - . . {8 times. It would be interesting to measure how
fast thesiigonsistency (upon replication) in the choice "odds A
vs. odd& B" decreases as the number of contemplated plays in-
Crga:sés {provided the odds A and B are not mathematically
.eduivalent). We may postulate that for sufficiently large n the
<{objective) probability that a certain individual wiil adopt a pure
strategy will exceed a given amount. Believers in reincarnation
should be expected to approximate pure strategies for quite low
values of n, because such people expect to play the same game
a large, or perhaps an infinite, number of times and hence ex-
pect their long-run luck to approximate the true odds, The con-
vergence to pure strategy will, of course, be less rapid for be-
lievers in reincarnation with strong time preference,



96 DECISION PROCESSES
4. DIAGNOSIS AND MEASUREMENT

Empirical research in the field of unce rtainly has Lo solve
three distinct problems:

(1) Diagnosis—how to devise crucial tests that will tell us
which calculus is used by a given subject in a given circum-
stance, Without ruling out introspection and interviews, we
should prefer tests based on the logical properties of the calguli,

(2} Identification—whether it is possible to separate a belii}
function from measurements of a total situation that im’p\lyes
other psychelogical unknowns (say, a utility function }es

(3) Measurement—having assumed a particular cal¢dlus, or
having diagnosed it and certified its identifiabilityhdw to obtain
estimates and confidence limits for its paramg‘tgiz:%, and how to
test its axioms or theorems. The pilot experigent reported in
the appendix describes one possible proce{u‘re for obtaining a
measure of the perception of mathematieg@l probability,

APPENDIX
. . www.dbl‘auli’l:;'r;ai‘y,or .in

The pilot experiments sutnmarizedY in this report attempt to
throw some light on the following problems: (1) the existence of
a probability calculus; 2) whether such a calculus has the nature
of a psychological probability function; (3} the shape of this func-
tion; (4) factors which cause behavior to deviate from what such
a function implieg\

AS

Experimental design. The subject was supposed to perceive—
Wwith or withéat distortion—mathematical probabilities tij, given
implicitQ\in terms of propositions E;, Depending on whether Ej
occurred, or failed to occur, one or the other of two sides of 2
bet.would win, For each bet (about sixty for each value of i} the
S'n};'lject said which side he preferred to take. As the stakes and/or
})mzes varied for the same bet, the subject might change his side
on the bet, Some of these bets were straight bets (x centsto ¥
cents), while others involved gains only, and still others losses
only. If the subject is assumed to maximize his (tentatively as-
Sumed linear) utility for money, weighted by his perception of
the mathematical probabilities of the E;, the levels over the
stake-prize field at which he reverses his choice determine a
real number Yu; (0 Yui €1) for each i. This is identified as
the "perception of the mathematical probability u3."”
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Subjects, Four Santa Monica High School students were the
subjects, They were paid for their time at a flat rate, plus any-
thing they won from the experimental bets.

Coneclusions. The following conclusions are to be considered
firm for their limited sample in spite of certain inadequacies in
the execution of the pilot experiment:

1. The utility function can without violence to observation be.as-
sumed as linear for the prize ranges investigated 0¢ to13¢,
2. An ordinary bet, gambling without possibility of loss,@nd
gambling without possibility of gain give rise to qualitatively
different responses and contradict the hypothesis\tliat choice
is based on a simple psychological "product” ef\ntility and
the perception of probability. R4
{a) If the choice is between evils, the lesgep loss is chosen
regardless of the relative odds of Qe two evils,
(k) If the choice is between two positiﬁe'prizes, the surer
prize is chosen regardless of,th\p magnitudes of -the two

S

prizes. O

3. A function ¥ can be derivegl.fqr"straight bets with a high
level of significance for eagi ediesflibrary org.in

4. The functions thus derived agree in three out of four cases
with independently derived metrics over the continuum g,
and with independenf tests in which the subjects rank-ordered
the events Ej accepding to their probabilities.

3. All subjects underestimate probability 1/6, two overestimate
probability 12,4, and three overestimate very markedly prob-
abilities pxéeéeding 1/4.

I

§ FOOTNOTES

N\
".

J{"Examples: (a) the postulates restricting the commodity field
dver which utilities at any one time are defined, N. Georgescu-~
Roegen: "The Theory of Choice and the Constancy of Economic
Laws," in Quarterly Journal of Economics, LXIV (Feb. 1950);

(b) the gambler-indifierence map, G. L. 8. Shackle, Expectation
in Economics, Cambridge, 1952; (c) the minimax principle in
games and in statistical decision functions. All these are special
kinds of functions mapping what I call the parent set onto the
derived set of alternative courses of action, They have nothing
to do with uncertainty.
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2, Bee, e.g., Karl Menger's '"Probabilistic Theories of Relations")
Proc. Nat. Acad, Sci, U.8.A., 37 (1951), 178-180,

3. This scheme of classification has its origins in C. H. Coombs,
"The Measurement of Psychological Probabilitics and Their In-
teractions with Utility for Consequences and for Risk", Working
Memo 2, Michigan Project, July 9, 1952.

4. "Probability Preferences in Gambling Behavior", Amer, Joa
Psychol., 66 (1953), 349-364,

9, It is not usually realized that this conception leads tn ?.{?rx\Jb-
jectionable logical regress: for in addition to the utility/which,
along with probability, defines the field of indifferagte, we must
have second-order super-utilities, more ”ultimaté}" than the
first, corresponding to the contours of the indi.ffg\-ence map.

6, Full discussion of these experiments will ‘\be found in Working
Memos 15, 27, 33 and 35 (hectographed) dPthe Seminar on the
Design of Experiments on Decision-Making Processes, Santa
Monica, 1952, OV

J
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CHAPTER VIII

A FORMAL STRUCTURE FOR
MULTIPLE-CHOICE SITUATIONS

by
Q)
Robert R, Bush,* Frederick Mosteller, * Gerald L. Thompsen*
HARVARD UNIVERSITY, DARTMOUTH COL LEQ‘E D

ol
7 %4
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1, INTRODUCTION &0

AN

A large class of problems in experimental psychology in-
volves choice situations. An animal or pérson is periodically
presentad with a choice of alternative.‘i;ourses of action, e.g., a
rat can turn right or left in a mazéyn# a person chooses one of
several answers on a questionnq.iré'as the "correct"one. The
possible choices are ordinari}&ﬁ:{'&r}gr@la%fﬁ%?%jn an experiment,
In many such experiments ongonditioning ané(fe§rn1ng the
same choire situation is presented to the subject repeatedly for
many trials and the psychologist is interested in the sequence of
choices actually ma;iégby the subject,

When one logkstat the data from learning experiments in-
volving choice sMuations, systematic changes in the behavior of
the subject a‘r@' tisually observed, These changes take place, one

. assumes, a8 2 result of the treatment used by the experimenter.
For example, the experimenter may reward one response and
punis \a;ndther. The rewards and punishments may assume
varjgus forms in different experiments—a pellet of dog chow
mdy be rewarding to a hungry rat, but 2 nod of approval may be

“eyually effective for an "ega-involved' human subject. The
évents which alter behavior may be the mere execution of a re-
sponse, i.e., a "practice effect"” may be present in some experi-
ments; there may be a tendency to be consistent, In a rather
general sense, then, what characterizes the experiments we are

*The work of the first two authors named was partly supported
by the Laboratory of Social Relations, Harvard University; the
work of the third was done in part at Princeton University with
support of the Office of Naval Research, Seniority of authorship
is not implied by the order of the names.
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discussing is a set of possible courses of action and certain
events which alter the subject's tendency to choose those
courses of action. In the mathematical system we are about
to present, these two notions will play a central role.

The work to be described below is an oulgrowth of the work
by Bush angd Mosteiler on mathematical models {or learning
[1,2,3] and related work by Estes [4], Miller and McGili [6] and
Flood [5]. In this paper no attempt will be made to apply the
mathematical system to experimental data. Instead, we have
chosen to present the mathematical structure in as generad
terms as we consider feasible and leave the applications\ld' )
future papers. The reader is referred to the literatugeor a

~

few applications of special cases [3,4,6]. RO

o
S S
N

2. THE ELEMENTS OF THE SYSTEM

As primitives in the mathematical sygtém we choose a set @
of aiternatives and a set ¢'of outcomesvThe set <. will contain
r mutually exclusive and exhaustive alternatives A, and these
alternatives will correspond to clagSes of responsés of real or-
ganismg in an experi“r’ﬁ"’é}ﬁ'flaqr%l{&tg’taﬂ‘) 6 an experimental study
of the behavier of rats in a stmple T-maze, for example, we
Wwould distinguish two alteratives: turning right (Aq) and turn-
ing left (A2)- We assu;rg'e,\that the set @ is presented fo the or-
ganism on each of a Sgri’es of trials and that on each trial the
organism chooses @ performs one of the Aj. Whenever an al-
ternative Ay occups™it will have some outcome O) and < is the
set of the s possible outcomes. In general, an outcome O will
corresponddo/some change in the organism's environment, 2
stimulus ohange, a reward or punishment, but we will include
no change &s a possible outcome. In the T-maze experiment
mentiened above we would distinguish two outcomes: finding
feod\(01) and not {inding food (0g),

In terms of our two primitives, alternatives and outcomes,
we will define what we shall cali events, Corresponding to each
alternative-outcome pair, (Aj,Ok) we will have an event Ejk. We
denote the set of the Eik by £ . A more general formulafion
would include events Ej which are not identified with alternative-
putcome pairs, but we will not consider such a generalization
}I]fe:;egerWe .further define a se? 7 of conditional probabilities Tik-

native Aj occurs on trial n, then mjk is the {conditional)
probability tha‘t outcome Ok cceurs and hence that event Eik
occurs, We will assume that these Tjk are constant; they will
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correspond to probabilities which the experimenter controls,
Since some outcome must follow each alternative,

(1) 2 Tk = 1.
k=1

It s convenient to regard all Oy as possible outcomes of every
alternative A,; if an Oy cannct follow Aj, then 7k = 0 for such
impogsible events, The above described concepts characterize,
for our purposes, the environment of an organism, i.e., repre-
sent an abstract experimental situation, In fact we shallgali
[ew, £,7] a representation of the experimental situaticm

We now need to ascribe certain properties to the}pfganism.
For any trial n (n = 0,1,- + ) we let the organismy possess a
probability vector p{n) whose components are.fh& probabilities
of occurrence of the alternatives A; on trial he Some event Ejk
will occur on trial n and this event wili shange the probability
vector to p(n+1)., For each event Ejk we define an operator
Tjk such that if Ejk occurs on trial’d,)
(2) p{n+1) =_Tjk p(n) .
We then assume that the opel\:ﬁfgi"g bﬁlﬁhabi%r inedr and so we
represent them by rxr stgehastic matrices, For our purposes
a stochastic matrix hasmon-negative elements, and columns
which separately sum.fo‘unity. (Usually it is the rows that sum
to unity, but we axpllising a diiferent convention.) The vectors
p(n) will be writte}as column vectors and so the Tjk operate
upon the p(n) fxom the left. We next place some further re-
strictions omfhe operators Tjk.

NS

o S
{3\

§ 3. THE COMBINING OF CLASSES

&l
e

2\ _Because the identification between real classes of behavior
and alternatives in the model is, to a certain extent, arbitrary,
we should like to have the behavior of the organism be invariant
under changes in these identifications, In this section we shall
formulate the "combining classes" condition and then give some
interpretations, When this condition is imposed, it will be pos-
sible to combine alternatives that have the same set of outcome
probabilities without altering the basic features of the system.
For example, if rats are being conditioned to bar-pressing, one
might define two classes of bar-pressing; presses from the
right and presses fram the Ieft. If these two classes were to be
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"treated' the same way, i.e., were to have the same conse-
quences for the rat, then we would like to be ahle to combine
these classes on any trial without changing our behavioral pre-
dictions. We will now make this idea precise.

We shall consider two representations of the same abstract
experiment and shall denote these by [¢ , & ,r] and [ <%, €% 7%].

Let ly = {AjP Y Ajh} be a subset of < = {AI, nee ARk

Define a composite alternative A, to be chosen if and oniy, if
one of the alternatives Ajy in < is chosen. (\)

N\

"N
Let (%= {Ap} U{2- &), i.e., the set consisting ofaWalter-
natives Aj which are in @ but not in %, together With the al-
ternative Ap. Since the alternatives Aj}, are mutgalily exclusive

the probability of Ag being chosen at the nthitrial is
(3) Prifg} = pjm) + -« 4 py @2 poin) .

We should like to define the compesite event Eqi = (40,01
to oceur if and only if one of the events Ej k = (A, 0) oceurs,

b_ut this leads to a furtlgeﬁbq‘o 1‘i;ﬁ_ei:at%lqn.mNnote that the uncondi-
t1§nal probability that“oné of %ﬁe ﬁ:lji‘k Securs at trial n is

i Pipy @) Ty k  In ordﬁr that A, could be treated as an or-
dinarylalternative, h}}s expression would have to be equal to
Po(n) times the probability that Oy occurs following the choice
of alterr.latlvq Afy¢ But the latter probability depends on which
alternatwe,AY has been chosen given that Ag is chosen, Hence

o &7, S
the c‘onc\eg‘t the probability of Oy given A" is well defined
only 1{;)7371( is a constant for all ¥ and for each k. Let £* =

{(AQ;ol)s Py (B, OS)} U {(Aj, Oyl r Aj € {2 - .CE.O)} that is,

Cedch of the composite events Egy together with the events which
are not composite events. We shall say that [, £, 7] and
(2", £*, 7] are equivalent representations of the same abstract
experiment if and only i{ Tjnk = 7ok for ¥ = 1,+ + -, h and each
value of k, that is, if and
the same treatment.

_ In most experimental arrangements of interest to us the con-
ditional probabilities ik are at the disposal of the experimenter.
Therefore, we assume that any two representations of an ab-

stract experiment can be made equivale i
nt b te
chotce of the j. q ¥ an appropria

onty if the alternatives A?-y receive



STRUCTURE FOR MULTIPLE-CHOICE SITUATIONS 103

In the representation [ @, £,7] of the experiment there are r
alternatives and in the representation [&*, £,7%] of the experi-
ment there are r - h + 1 alternatives. Consider, for example,
the case in which the first (r-1) alternatives are combined, i.e.,
@ ={A1, " Ap 1}, 7= {Ap, Ap}. Inthis case the proba-
bility vector

P1 Po
{4) . | is replaced by the vector .
Pr Pr .\‘\

N\

This change can be thought of as a linear transformat’ion\ of the
r-dimensional probability vectors (which form an (£=1) dimen-
sional simplex T._y, the space over which the robability vec-
tor can vary after the restrictions Zpj =1 and™O £ p; are
imposed) onto a one-dimensional sub-simplexNZq of i%self.
This is a linear transformation which sepds”

’~\ . P
Py i QO 0
{5) . onto.tﬁé‘"\’*’v@b{m’ﬂbl ry.drginy’
Pr N 0
T Py

2

where we have arbitr;grhy placed p, in the first row (it could
have been placed ifkAny one of the first r-1 rows). The only
difference between (4) and (5) is the addition of r-2 rows of
zeros in the sefond vector of (5) and the correspondence (iso-
morphism) petween the two is obvious, For this example, the
matrix of.the" singular linear transformation (5) is given by

& 110010

R\ 00 -+ 00
@ N
00-+«+-00

00-.--01

The mathematical term for this kind of a linear transformation
is projection.

To each pair of eguivalent representations of an abstract ex-
periment there is a projection matrix C similar to the one shown
in {6). For each operator Tjk define the projected operator
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T*jk = C Tjk, and for each probability vector p define the pro-
jected probability vector p” = C p. The star operation is
equivalent to left multiplication by a projection matrix C,

We shall say that the operators Tjk {abbreviated T in the
following) satis{y the combination of classes reguirement if and
only if, for each pair [«, +,#] and |- (7, ¢ " 7*] of equivalent
representations of the experiment with associated projection
matrix C, each operator T satisfies

{1} T*"p" = (T p)" thatis, (CT)Cp = C(T p),

AN
for all p in Ty_y. Since matrix multiplication is asscha?fve
this condition will hold for all p if and only if W

3
7°%a&

(8) CTC = CT. 7\
\

We wish to have the operators Tk independerﬁf%f the 7k and

S0 we are at liberty to choose the 7 so that\iny two repre-

sentations of an experiment are eqﬁivalergt\ Hence we require

that equation (8) be satisfied by all prefection operators C.

The foregoing arguments are summarized in the

N

e/

Definition: A stochastic mateix operator T satisfies the

combination of class¥¥ FEFTREREY P84 only if equation (8)
is satisfied for all projectionimatrices C.

To see what restrictiefMhis places on the operators,l let
I tysll be the matrix o'f,"a.h operator T, and consider the projec-
tion matrix C in eduation (6). Then computing the right and
left sides of (8) we have:

r-1
PR Z t“/r
y=1

¢
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r-1 r-1 r-1 r-1
Tty L otyp ... L W1 T otyy

0 o ‘e 0 0
CTC = )
0 0 ... 0 0
tr1 1 tr1 trr R
A

These two matrices will be equal if and only if trg = tpiifor
§=1,+++,r-1. Whentpg=tp) for 6 =1,2, -+, rehithe last
rows are identical at once, and the first rows are, identical be-
cause each column must sum to unity. I we tal;e:tsﬁé other sub-
sets of r-1 alternatives and combine them wg will obtain pro-
jection matrices similar to the one in (8) abd’applying them to
equation (8) we find that in order that ang subset of r-1 alter-
natives can be combined it is necessarythat the tyg should be
equal for all 4 # v, i.e., R \J
(9) tyg =t for ¥ # Q\g{i\;}ﬂ,@bmdl;&'m'}f@rﬁ_;n
Coenversely if {9) is satisfiedthen any subset or r-1 or fewer
alternatives can be combided in the desired way.

These results imply/that when the combining classes condi-
tion ig satisfied we Gin‘w’rite the matrix of any operator T as
follows: P

51
to
1- Xty
y#r
t
P
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I
where I is the r x r identity matrix, Setting o -1 - ty
},=1
and A, =t,/(1-a), for @ # 1, we have
MM Ny
T =al+(l-a) . . . .
Ar Ap ... Ap
"\
r
Note that 21 Ay =1 and that 0 < A, and therefore )E.Z?\ltself
'y: P\

a probability vector. Let A be the r x r matrix, (&;iquﬁ of whose
columns is the vector A, This leads to I
"\
Theorem 1. If a stochastic matrix operatbr T satisfies the
combination of classes requirement, as Q'\\{en by equation (7}
above, then T can be written in the foKr’n.

(10) T = al+ (o)A .
From this theorem we imm’egﬂ{atély obtain the following three
corollaries: www.dbraulibrary org.in

Corollary 1. If a < A, then A is the unique fixed point of
both Aand of T, whiléif @ =1 then every probability vector
is a fized point of /[Tz{)

The first part }{hﬁs corollary follows from the fact that for
any probability ¥eetor p we have Ap = A, because the compo-
nents of p spun’do unity and all the entries in a row of A are
identical, Moreover, if @ < 1 then T p = p if and only if p = A
When ¢ £\f"then from equation (10} above we see that T re-
ducesgq\the identity operator I,

.. (‘Corollary 2, When an operator T satisfies equation (10)
\abéve then the nth iterate of T is given by

(11} T = oIy (1-gD) A
and when in addition [@| < 1 then p(n) = T p(o) converges {(in
the topology of Tr_1) to A.

Equation (11) follows from the fact that AD p= A for

n=1,2,« .. which is a consequence of Ap=2Xxand AXx=2X,

The convergence for |af < 1 is immediate from the definition
of p(n) and equation (11),
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Corollary 3. Two operators Tp and Ty which satisfy
Ty = a3l + {I-a;)A; have a commutator TyTy - TyTy given by

(12) T1Ty - TgTy = (1-a3}{(1-ag){Aq - Ag),

and Ti and Tg commute if and onlyif @1=1or @g=1 or Ty
ard Ty have the same fixed point,

It is readily shown that A7 Ap= Aj and Ay Ay =Ap, and then
a simple computation gives equation {(12). The two operators
commute if and only if their commutator is the zero operator
and the three conditions which cause this to be so may be’ seen
immediately from equation (12); when Ay = Ag then A3.E239,

In order that the operator T in equation (10) should\have
non-negative elements the parameters o and A; muyst\satisfy
the inequalities 0 € a + (1-@)x; £ 1 and 0 £ (1.0 <1 for
all i, SBince the Aj are non-negative, the above"i}lequalities re-
quire that @ satisfy \
(13) ( Ay ) < 1\\

max = o SV
Y \yp-l <\
[If some Ay =1, then /{k},-l}‘iéﬁ,tts be interpreted as ~ co,]

If ¢ is any probability vectofiehd bPukbramabrixief the form
(10), then Tp =a p+ (1-a)A,+H @ is non-negative then p is
sent by T to a point Tp on.thé line segment between p and 2,

It can be shown that the,,,s[faly linear operators which possess this
interpolation property'\’a'.r‘e of the form {10}, We shall insistupon
this property for all events Ej, i.e., for all j and k,

(14) W@ Tik = @k T+ (1-ajidAjk -

Another ifiterpretation of the combining of classes restriction
Is the folldwing. If p is any probability vector and C is any
projectign operator of the form (6) we have the following dia-
gram:ey

N”

m~\. T
\ 3 p — T p

C C

T*
p* » [Tpl = T 5,

Hence if p(0), p(1), p(2), -+ + is any sequence in the representa-
tion (@, £,7] and p{0)*, p(1¥, p(2)*,« + + is any sequence in the
representation {A*, £7,7"] then we have
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pO)——— p(1) ——» p(2) s - - .
C C C

pO) —— p(I)" _, pi2y-__, --.

Hence if the combining of classes condition holds or if eachof
the operators is as in (14) then any sequence in the rep\resenta-
tion [&*, £% "1 is a projection of a sequence in the pidphgsenta-
tion [, ¢ 7], O

4. TRAPPING THEOREMS{ ¢

Now that we have developed the generdiform of the event
operators, given by equation (14), we @il show that the proba-
bility vector p(n) is contained within}pecified regions in the
limit as n—oce, Because a vector{tahinot be moved out of these
regions by any of the Tjg, we gall the statements about the re-
gions the "tr‘appin%,\E}}g%gmﬁﬁ{.&[?‘gpgﬁrst part of this section
we shall consider the OpeR&tors to be indexed by a single sub-
script i; thus we have gpérators

"1} = ajl+{l-ay) Ay,
where i =1, .. §\For any subset X of Zjp_1 hereafter de-
noted by ¥, let"T;(X) be the set of images of points of X after
one applicatién;of the operator Ti. The following lemma ex-
hibits the properties of the operator Ti. (For simplicity we
drop t{e\w seript 1 in the statement of the lemma.)
L,?e}ama. I T=al+(1-a)A and o # 0 then T has the

following properties:
\“ () Tis one to one and continuous,
N\ (b} T sends ciosed (open) sets into cloged {open) sets,

(c) T sends hyperplanes onto parallel hyperplanes.

If ¢ =0 then T maps every vector onto the vector X,

/N

Proof, (a) If Tp = Tp' then ap + (1-g)xr = ap' + {1-a)r so

that a{p-p') = 0. Since @ £ 0 we have p = p', The continuity
is obvious,

1 1
{(b) The inverse mapping to T is T-1 = I+ {l”a_}A

which is continuous and therefore T sends closed sets into
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closed sets, A similar statement holds for open sets.

(¢) Let h=(hy,-°*, hy) by a row vector, x a (column)
probability vector and d a real number, Then consider the
hyperplane H = {x | hx = d}. We have, for any point x on H

h{Tx) = ¢ hx+ {1-2)ha = ed+(l-a}h2a=d

where &' is a real constant, Ther T{(H) is the hyperplane
H' = {x|hx = d'} and so H' is parallel to H,

fa =0then T=A and Tp= Ap=2A forall p in =, This O\
completes the proof of the lemma, : a

It follows as a corollary to this lemma that the image undey
Ti of any polyhedron is again a polyhedron. In particulaf (%)
is a simplex with faces parallel to the faces of Z. ‘

If ¢j =1 then Ty is the identity operator and ’I‘j(jﬁ) = ¥
hence this case might be interpreted as no learnig.” If aj = 0
then, as seen above, Tj{ZT) = Aj, a point in =, \and’so this case
might be interpreted as one trial learning. M 8'< @i < 1 then
each point p in T is moved by Tj to an i ferior point on the
line segment between p and Aj, so that(this might be considered
uniform learning; the smaller @, thénore rapid the learning.
If @ < O then each point p in ¥ iS¥moved by Tj toa point on
the line through p and A; which TS HHHEBAEYsIE ide of A
from B. ’r." N

In Figure 1 we illustrate\graphically the sets £, T(Z) and
T4(X) for the case r = ?»,’\In Figure 1(a) the operator2 is Tp =

Ol

(a) (b)

Fig. 1. The simplex T and its first two images, T(Z)
and T2(3), for the case of three alternatives (r= 3), In
Fig. 1(a) we have taken @ = 1/2 and A = (1/3, 1/3, 1/3);
in Fig, 1(b), @ = -1/2 and A = (1/3, 1/3, 1/3).
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1/2 p+1/2 (1/3, 1/3, 1/3), thatis, a = 1/2 and & = {1/3, 1/3,
1/3). In Figure 1(b) the operator is Tp = -1/2 p + 3/2(1/3, 1/3,
1/3), i.e. @ =-1/2 and A = (1/3, 1/3, 1/3).
Regardless of the choice of the initial vector p() in & we

can say that after the first step in the process

t
(13) p{l) e U Ti(%) = 8y (set-theoretical union).

=1 O\
51 1is closed since by the lemma each Ti(Z) is closeddand so Sp
is the union of closed sets, \

'\
A possibly weaker statement than this one is W
t
(16) Py e \/ Ti(®) = ¢ (convexiuftion),
i=] v

p ¥
W

t 9.\
where the symbol \/ Ti(Z) means.thé’ smallest convex set
i=1

L >
o/

containing the union of the sqis:},Ti(Z). _Since this union is
closed, Cq is closéd FIEHHEYE) CRoWs the set Sy and
Figure 2(b) the set Cy foran example with r = t = 3 and two
of the aj positive and.ene negative.

0

¢ \J

&

(a} (b)

Fig. 2. The set-theoretic union, 51, and the convex union,
C4, of the sets Ti(Z) for r=t= 3. Two of the a; are
positive and one is negative,
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The correspending statements at the end of the nth trial are:
t

(17) p(n} € U T;i(Sp.1) = Sy
i=1
t

(18) p(n) € \/1 Ti{Cp-1) = Cp .
i=

O\

8, and Cp are closed for the same reasons that 8y and Cy \
were closed. The sets Sp and C, provide bounds on theiloda-
tion of the probability vector on the nth trial. If the ailfa.ré
small in magnitude these may be quite useful bounds. 3(

Since each |a;| £ 1, the sequences of sets whmh obtain,
namely {So, Sy, 8y, + +} and {Cg, Cq, Ca,- - 'L\Where
89 = Cy, = Z, are monotone decreasing and havedimits, Hence

we define O
oo I
(19} S= lim Sy = ﬂ}sn )
n— oo { n:b
{20} C = lim _ W—dﬂléﬁ‘al y.org.in
=Ry n=0

Note that both S and C afe closed sets since each member of
each sequence is c]os&d\Smce Cp 38, for everyn, C 2D 5,

We next define ré¢ursively two more sequences of sets { Ry}
and {Bp} with which we shall be concerned. Let
N\No~ t
(21) x'\.": Ro = li = BO ’
"\’ 1\=/1
Q ¢
(22) 3 Ry = |J Ti(Rn-1),
i\: 4 i=1
t
(23) By = \/ Ti(Bn-1).
i=1

Since Tj{Aj) = A the sequence { By } is monotone increasing so
that we can define

&
(24) B=lim By=[] By,

N n=0
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In this case B need not be closed. For example, iet r=t= 2
and consider the two operators, Ty and Tg, where Tip =

- %D + 2(1/3, 2/3) and Top = - %p *2(2/3:' 1/3), It is not

hard to show that for these two operators B is the one-
dimensional simplex of probability vectors except for the
vectors (1,0} and (0,1), and is therefore an open ret,

The sequence {Rg, Ry, -} is in general not rmonotonie,
The following example3 shows that this sequence need nadteon-
verge, Let r = t= 2 and consider the following two gperators:
T1(p) = (1,0) and Tp(p) = -p + 2(1/2, 1/2). It is nothitrd to
show that the limit inferior of the sequence { Rnd\consists of
three points and the limit superior of the whole, simplex Zj.

Hence we define "S
NS0
(25) R = lim sup R, = \ R, .
=0 m:i\\ n=m

R need not be closed for the samg.i:éason that B was not
necessarily closed, W

With this notation we can at:"gte the "weak" trapping theorem.
A slightly strongé‘i“"’%gg{%ﬁlq “Gtwitfbe given later (Theorem4).

_ Theorem 2, If jai& 1 for i=1,. .., t then C = B (where
B is the closure of B)." When 0 < a; <1 for all i, then C =

Bo- \<
Proof. If allvai are zero then € =Cp=-++=C=By~=

Bt =By = %¥= B, and the theorem is trivially true, Hence we
assume"{%}}t"at least one @ is non-zero. Let a = max jajl;
¢ 1

then\Lt(%'a < 1. We also assume that By C T (proper contain-
ingh\or there is nothing to prove, because if B, = ¥, then By =
Chn=Zforn=12...

o

\\3:: First we show that C 2 B. We know Co2Cy2-:- 26
St amd BoE By S ... op e TSince Cp 2 Bo it

follows by induction that Cp > By, Let m > n; then Cp 2

Cm 2 By. Hence for every n, ¢y 2 By, for all m > n, Fur-

thermore C, 2 By, for m<n andsoCp, 2 Y B = B for

€Very n; therefore C = nﬂ n = B, and sincglc is closed

O:

C 2B,

Next we show that C € B. We will do this by first showing
that as n_gets large, the extreme points of Cp get arbitrarily
close to B, and then using convexity. Since each Cp, is a convex
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polyzon it is spanned by a finite number of extreme points., Let
i1, ¢ 7, 4y be the extreme points of C, = Z. Then since the
operators Tj are linear, Cq will be spanned by a subset of the
points ¢ (1) = Tylu J) for i=1,++-tand j=1,-+«-,r, Ingen-
eral, C,, will be spanned by a subset of the points u(n} = T1 e

Tll {up) for ip,vevig =1,- -t and j=1,¢ 1,

Observe that

(26) Ti‘n e Tll (%) _‘_)U T ‘e Tll (g . N\

Lei § be the diameter of =, (The diameter of a set X is thér

lengest line segment that it contains; symbolically \ \.

3 = g.1.b d(x,y), where d(x,y) is the distance between® and y,)
xveX ;

Then the diameter of Ti c 0 Ty i () is < 5a{’-~?&ﬁich can be

made arbitrarily small by taking n large. \
Since each of the r points on the right Hand side of (26) be-
longs to B we have d[u(n),B] < diametexof Ty -« - Tj; (T} <

0 2™, Hence the extreme points of Ch-Bet arbitrarily close to
B. Since the extreme points of C.aAre not necessarily those of
any Cp and are not necessarily.in TEPTRYRYeE O introduce
the sets En = {z|d(z,B) € § &% with z e =}, Since C; is con-
vex the above argument shows Fy =2 C and we already have
shown that C, 2 B. Sined, 8 o™ — 0 the sets E; are monotone
decreasing and we hr{g -

(27) Lim(NEp = () Bn= lim E,=C=B
n—{ap n=1 II — =0

have By 28j = +++=B =B and the second part of the theorem
follows 4 O\

Thelweak form of the trapping theorem was concerned with
the, se\ts C and B, Correspondingly, the strong form of the
fhapping theorem is concerned with the sets R and S.

which is the\fﬁ*st part of the theorem, When 0 £ aj <1 we

Theorem 3. If aj < 1 for i=1,-+ ¢, then § = R, where R
is the closure of R, Moreover, if at least two of the ha are not
equal, and if a; # 0 for all i, then 8 is a perfect set,

Proof, From the definitions we have 8y 2 Ry and, since 5y
is a decreasing sequence 8 =2 Ry, for n £ m, Hence
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W

(28) S=%2MN |J Rm - R.
n=1 n=1

m=n

Since S is closed we also have S O R.

Suppose x € 8, then x ¢ S, for every n. Then for each n
there exists a set of integers ip,» + +, 11 such that
Xe Ty« Til(E). By (26) and (21} we see that Ty -Tj{(Z)

contains points of R, namely the Ti, -« * Tiy (\). Hence

d{x,R) < da™ for every n, lLe, xe R. This proves,$ ¥R
U aj £ 0 for all i and at least two of the A are‘aot equal,

Wwe must show that 8§ is a perfect set, i.e., we muSthshow that if
X is a point of $ then it is a limit point of S, L%t U be an open
spherical neighborhood with center at x and'tl}ameter d. To
show that x is a limit point of § it is cleaxrly sufficient to show
that every such neighborhood contains petats of S other than X.
As before, let a = max laj|and let § Be*the diameter of =,

Choose an N so large that 6 oD <:E“i/‘2’ for n> N. Now
x € 8C8y for every n, and Sp _@opsists of the union of sets of
the form Tin- ' @ii&ﬁbr'a‘;!}??@ﬁy-m@m; then for some
ip, ¢+ +,i] we have x ¢ T,;}flj-'- *Ti,(Z)C U, since the diameter
of T+« Tj (z) is atmost 6 o™ < d/2. Now Ty -+ -Ty (2)

contains points of~S,:’n’amely the images of the points A1,- -+ + At
under these opepators. Since at least two of these points are
distinct and sinée’the lemma implies that the operators are one
to one, the n@ighborhood U contains at least two points of S.
Hence thg\{.sfef U - {x} contains at least one point of § and there-
fore g\'{aa limit point of S,
We, return now to the double-subscript indexing of the op-
erators and drop any assumptions on the a's. Recall that, if
~Qnthe nth trial, alternative j is chosen and outcome k 0oCUES,
then the operator

(29) Tik = ajk I+ (1-ajidA jk

Is applied to the probability vector p(n). If aji =1 then Tjk
is the identity operator; hence if 0 < Tjik then there is positive
probability that the extreme point 45 =(0,... 0,1,0,.-+,0)
{the 1 occurs at the jth place) will not be moved on that trial.
For the operators Tjk with 2ijk <1, or @ik =1 and mjg = 0,
Theorem 2 still applies., We can restate Theorem 2 as follows:
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Thecrem 4. Congider the following sets,

(aj Let W be the convex set spanned by the vectors Hj for
which there is an operator Tjk with @k =1 and 0 < =y

{k} Let B be the set deflned as in equations {21), (25} and
{24) where the operators Tjk considered are those for which
@jk <1, or for which ejg =1 and 7jk = 0.

{c} Let C he defined as in equations (16), (18), and (20).

Then C = BUW, When 0 S @ < 1 for all i then C = BqUW.

Verbally this theorem states that asymptotically the proba—
bility vector will be “trapped" either in the convex subspa&e*W
or in the convex subspace B, However, with pmbablhty 1\Mtie
probability vector will be trapped in B,

By similar reasoning one can restate Theorem 3 as follows

&

Theorem 5. Consider the following sets.

{a) Let W be defined as in Theorem 4, O

{b} Let R be defined as in equations (21),7(22), and (25} for
those operators T}k such that @ jk < 1 q “such that dji = 1
and rjk = 9.

{c ) Let 8 be defined as in {15) (17) nd (19} for the same
set of operators as in (b). wawiyw dbraulibrary org.in

Then S = RUW, Moreoves,, i 2 jk # 0 for each j and k,
and W contains more thanone pomt then S is a perfect set

Again the probability x@ctor will be trapped in R with
probability 1. £

Negative values o}\} have been of little interest in experi-
mental apphcatmns If the ¢'s are non-negative then Theorem
3 can be modified’as follows: If the ¢'s are non-negative and
@jk + @ <plfor all j, k, {', and k', and if the Ajx span an
n- dlmen ighdl convex set, then 8 is a (generahzed) n-dimen-
sional Ckor set,

The strength of the above theorems depends upon the size of
the parameters o ik and the location of the fixed points of the
E’Pel'atcurs. If the a@'s are small and the fixed points lie in the
interior of the simplex T then the theorems are very powerful,
but if the a's are close to unity and the fixed points are at the
extreme points of the simplex then the theorems (especially
Theorem 2) may very well be vacuous. It is also clear that
Theorem 2 could be obtained as a consequence of Theorem 3 but
that the proof is no easier than the independent proof given.
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5. THE EQUAL ALPHA CASE

In Section 3 we restricted the operators Tik o the form
given by equalion (14), We now introduce another major re-
striction on these operators as 2 special case, We require that

(30) Qjg =&, ] =1,2,+¢-r; kK =1,2 ++»q,

This restriction greatly simplifies further mathematical CC}I—
siderations, Furthermore, the resulting model is Of’i{l‘thQSt in
some psychological applications. N\

We will now discuss some of the sequential aspewts of the
problem, We begin with an initial vector p(OJ.“if)i'T iriat 0 we
will apply one of the rs operators \\

(31) Tjk = @ U+ (1-2) AypY

to p{0) to obtain a vector p(1). On trigdl we will agair apply
one of these operators, etec, On tria.f\ﬁ; then, there will be (rs)?
possible (not necessarily distinegh vectors pin)., We shall label
these possible vectors with a subStript i = 1,2, - -, {rs)l, Cor-
responding to each such vectgm pi(n) will be a sequence of vee-
tors for trials 0 davn.d blattithemyrotaiility of occurrence of the
Ith sequence be Pj,. Therefore, on any finite trial n, the

pi(n) form a multivaridte distribution in the original r-dimen~
sional space and DPignis the density associated with pj(n), The
jth component offthese vectors pifn) will have a marginal dis-
tribution, and fhis ‘marginal distribution will have a mean value,
called the jﬁz’ nmarginal mean, The r marginal megns will form
a vector Vi) Because of the linear-combination properties of
vectors,\';.n is the same as the mean vector defined by

O\ (rs)n

(3.{3)3; Vo= X P, pi(n) .

O i=1

\/With this definition and the operators Tjx we can develop a re-
cursive formula for these vectors of marginal means, On trial
n, one of rs events Ejx occurs. The probability that Ejg oc-
curs is p;j j(n} mjx where pj j(n) is the jth component of pi(n),
l.e, is the probability of oceurrence of alternative Aj on trial
I when the ith sequence has occurred, and where mj is the
conditional probakility of outcome Oy, given A]-. The vector
of marginal means on trial n+1 is then

{rg)n r s
33) Vp = ¥ Pin{‘zl E Py, i) 7 Ty pi(ﬂ)} .
j: :1

i=1
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Now when we apply Tjk of equation (31} to pi{n} we have
(34) Tjk piln) = @ py(n) + (1-a) Ajx .
Using this result in equation (33) and recalling that Z Tk = 1
and 2—!91] n) = 1, we have

{re)ft r s
{35) Vy,1= 20 Pini@ pifn) + (1-a) 32 E Pi ](n Tik Ak O\
iz1 =1 k-1

We then define an average vector Ij by \ \J)
B g ":} L W
(36) ;\j = Z TIjk A‘jk " 3
k=1 LV

and congsider the sum Z B j(n) Xj. If we forma% r x r matrix
N

A by letting its jth column be JtJ, we ha\Qes
(37) Z pi,j(n) RJ —»A Pl(n)
j=1 www dbraulibrary.org.in
Thus, equation {35) becomea \
(rs)n us

(38)  Vn, = E}\@m {a py(n) + (1-2) & pyin) }

but from deflmtigm {32) we get

(39) AN Vn+1 =a V,+ (1-a) A Vy

Hence, LS: éi\a.t;‘obtaln the vector Vyu,1 by applying to Vp an
Operatczrjf defined hy

(491;\’;3' T=als+({l-a)i.

Thig expected or average aperator T will have a unique fixed
point x provided that the equation Tx = x has a unique solution,
But we see that this requires that

Tx =ax+(l-a)Ax=x,
or
(41) Ax=x

Thus, T will have a unique fixed point if and only if A has a
unique fixed point, Moreover, the fixed point of T, if it exists,
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is the fixed point of A . The requirement of a unigue fixed point
is identical to the requirement that the vector equation

(42) (R-Dx = 0

have a unique non-trivial solution x, and this in turn requires

that the matrix (A - I) have rank r-1, Morcover,if T has a
unique fixed point z and if x is any point in Zy_1 then the point
x(n} = Thx will converge (in the topology of T, 1} to 7., ¢\
For some purposes it is convenient to write out the COnipo-
nents of the vector of marginal means. Let us denotethe #th

component of the fixed point by V, ,, and the »th c\t:ﬁnp’onent of

Ij by Tj,y. Then equation (41) gives A\
T _ '\\
(43} Z A’j’Vl vocrj = erz/"m}
i=1
or using the definition (36) \
r s AWV
(44) Z ): ik }ékﬂ;vw’j = Vm,-,l/ .

]=x$\=\r%{f&bl'§p1‘libr"al‘y_or'g_in
These equations, along with the condition that

Ve r
(45) ,{'"x\ z b v 1
\\.. l/:l L=} |

may be solvgq ior the asymptotic marginal means, Vo,
We nowpplace one further restriction on the Aji,, Which
Seems reasonable in experimental applications., We assume
that Q&fﬂ’alternatives are treated alike, i.e., if
,‘ =121
,,,\: ;(’46} Tk = Tk
\ )

k=1,2"+-+8

then the asymptotic marginal means are all equal, i.e.,

1 .
(47) Vi = T i=12,
This restriction simply means that if all alternatives have the
same set of outcome probabilities, then, on the average, no al-
ternative will be preferred to any other in the limit, We further
assume that the Ajk de not depend upon the Tk, 1.8 the limit
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point of any operatar Tjk is independent of the concitional
probabilities of applying that operator, When we introduce
equations {46) and (47) in {44) we have

r s
(48) > 2 g )ij’u= 1.
j=1 k=1
We want this equation to hold for all values of the Tk consistent \
with the condition that A ¢
oA\
s a\ T
(49) > e = 1 \
k=1 "G
and 30 we must have .“,j\"‘
r \ v
(50) 2 Mk, = 1. o
334 ¢*{
j=1 -\ N

This condition is useful in a,pphcatmns‘wh'ere the alternatives
are symmetrically defined, e.g., wben the experimental design
is such as to eliminate effects oi@gsahwmnmﬁeyen%em

al
3

6. THE EQUAL ALPHA CASE WITH TWO ALTERNATIVES
éND‘rwo OUTCOMES

In this section we vnll apply the analysis of the preceding
section te the case.df two alternatives, Ay and A, and two
outcomes Oy and Og, to illustrate how the mathermatical system
might he e"d\to describe a simple experiment. We shall use
COndlthi‘!‘ ) and so we have

N k=12
A
(5~Q\; " Mk, + Mg, = 1
1/=12
Further, since Ajk is a probability vector
(52) Kjk,l + ?ij,z =1
k=1,2

We now make a further restriction on the Ak, ,,- We assume that
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outcome Op is associated with "reward” and Oy with "non-
reward"[so that if 7yy = 1 and 737 = 0 (A7 is always "re-
warded” and Ay is never ‘rewarded”) then V1 = 1]. Equation
(44) gives for these special conditions, '

Ay =L
(53)

A2 = 0. ~
Equations (51) then give A

{

A211 = O O’
(54) A

Az21,2 = 1. e \ e

" )

These equations along with equations (44) amb\(éﬁ) then allow
us to solve for V_ 1 and obtain

1 - i'r2,i\\"
——-__.:.'—Vé-&_.-_.
2 - B T
This result was cbtained earlieg by Estes in unpublished work.
The interpretatiQa\\aﬁ_gqmmim@mrégﬁ two choice situations
with risk is clear; it gives\the asymptotic mean proportion of
choices of alternative A" in terms of the probability 731 of
reward of Ay and the probability wgq of reward of Ag. For
example, if 711 z L7 and 791 = 0.2, then Vm’]_ = 0,73, Thus,
the equal alpha’chﬁ\e predicts that the organism will not learn
to choose the fayorable side all the time. Furthermore, there
is evidencénifisome experimental situations that indicates that

this result)i€ approximately correct.
.“\‘0

‘\\
\ 3 T. APPLICATIONS OF THE SYSTEM
AL
\ ) In applying the mathematical system described above to the
analysis of experimental data, a number of problems arise.
First of all, one must set up identifications between elements of
the mathematical system and observables in an experiment; the
alternatives and outcomes in the model must be given empirical
referents. Any rules for making such identifications are putside
the mathematical system but are crucial in making use of it.
Secondly, there are serious problems in statistical estimation
of parameters, such as the @ jk and the components of the Ajks
from experimental data, Most standard statistical techniques
are not easily applied to such a stochastic process.

(55) Vel =

>
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Mozt of the applications of the system have been to problems
with but two alternatives. Bush and Mosteller [3] describe the
use of two special cases when r = 2, one to data on the avoid-
ance training of dogs and the other to data from two-choice ex-
periments or rats and humans. Estes has applied a mathemati-
cal model which is essentially equivalent to the one described
in this paper to a number of experiments but most of his work
is still unpublished, Miller and McGill [6] present a model,
which they show is a special case of this system, and apply it tos
¢ata on rote learning. Finally, Flood has used the system for
studying the behavior of people in a nine-choice punch—boanc{fx
axperiment [5]. In these several studies, the estimation gro-
cedures have involved either fitting the data to the mqngiﬁ'al
means in the moedel or using standard maximum likelihodd pro-
cedures, None of these procedures utilize all theﬁ}f{irmation
contained in the data and hence there is a needdgn/better es-
timation techniques. \;

INY
O
APPENDIX( )
) wwahdbraulibrary.org.in

Since the manuscript of this papeér was written a more gen-
eral development of the combinipg of classes condition has been
found which we present here, “The original manuscript was
shown to L. J. Savage whg@hen proved the following theorem:
To satisfy the combining\of classes condition in three or more
dimensions, a contmk stochastic operator S must be of the
form Sp = ap + (1=-&JA, where a is a suitably chosen scalar
and X is a probability vector. In this appendix we prove 4
slightly moreg g(eneral theorem without using the assumption of
continuityy 413d so extend the theorem to arbitrary stochastic
operatorén"

In the\following, we will always imply that probability vec-
tors(and operators are r-dimensional, where r is finite and
™z 3,

Definition 1. By a stochastic operator 3 we shall mean an
operator which sends probability vectors into probability vec-
tors, i.e., Sp = p' where p and p' are probability vectors.

Definition 2, A projection of a probability vector p =
(b1, b2, - * -, Py) into the probability vector p* is obtained by
choosing a non-empty sub-set ¢ of elements of p and replacing
all but cne of them by zeros and that one by the sum of the
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elements in the sub-set, while maintaining unchanged the ele-
ments of p aot in ¢, Any stochastic vperator C that projects
probability vectors is a projection operator and can he repre-
sented by an rxr matrix,

Clearly there are a finite number of projection operators
corresponding to the finite number of sets o,

Definition 3, A stochastic operator S is said to satisfy\the
combining of classes condition if and only if
{1) CSCp = CSp )
'\
for all projection operators C and all probability vectors p.

S

Lemma 1. T S satisfies the combining o élasses condition
and p and p' are probability vectors sucgh¥that Cp = Cp', then,

(2) CSp = CSpi)
In particular we have, for the compenents Sip of Sp
(3) > Sjp.'é..’Z S;p'

W W ,diﬁ'ﬁllfbi"é&' v $g.in
where ¢ is the set definiag 'C.

Proof, If Cp = Cpfthen CSCp = CSCp' and application of (1)
to both sides shows(that CSp = CSp', which is (2}, Expression
(3) is obtained by‘reading off the proper component of the vec-
tors in (2), ()

Lemmajlisays that if the projections of two r-dimensional
vectors op\a’sub-simplex are equal, then the projections of their
imagegafrthat sub-simplex are equal,

JLemma 2, If S satisfies the combining of clasgses condition
L hen Sp={r1(p1), ¥alpa),* - -, ¥ ¢lpr)) where the y; are func-
(tons sending I into T(I is the unit interval, {x|0 £ x < 1}).

Proof. Let ¢ = 1,--+ i-1 i+1,++-, r and let C be the
projection operator defined for this . Let p be a fixed proba-
bility vector; then for all probability vectors p' with pi' = Di
we have ¥ pj= T pj' =1-pj sothat Cp= Cp'. Lemmal

Jec jeo
now implies that (3) holds, so that

Sip = 1- 20 8p =1-3 sjpr = §p .
€0 jeo
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Since p was an arbitrary vector satisfying pjy' = pj, and p
fized, this shows that Sip depends only on pj, and defines a
single-valued function vi{p;) = Sjp. This function yj maps [
intc 1 because 8 is a stochastic operator so ¢ £ pj =1 im-
plies 3 < vi{py) = 1,

Lemma 3. Let x be any point in I; then there exists a
function v sending I into I such that

{4) yi(x) = y(x) +yi(0) .
for i =1, «, r, Moreover, if X, y and x + ¥ belong tg,\I,\".\
then M

(5) y{x+y) = v{x)+v(y.

Proof. Consider two probability vectors p and\fl' such that
p={pl, P2, P3, -+, Pr) and p' = (py +pg, 0,088, * *, Pr):

Then r P\
6 1-2 vilpy) = v1(p1) p242w2)
j=3 N\
J = 71(9111"92) +v2(0).
Setting py = 0 and pg = x in thisCANBHRAM K NRYPy in
y1(®) - 71(0) = X2 - v2(0) = 7(x)
thus defining the function #\sending I into I. By repeating the
argument for other paips\of indices we obtain (4).
Now let x, v and{Z+"¥ belong to I; setting X=p1, ¥ = P2
substituting (4) inte\?!}) and simplifying, we obtain {5), This
completes the prooi’of Lemma 3,

We want to Show that v is a linear operator, i.e., that
eguation (5)@}6% is satisfiied and in addition

§ y{cx) = cy(x)

for a{l’fk in I and all real constants c¢ such that ex isin L
We Swil] prove that this latter requirement is met by showing
f v(x) = Bx where B is a constantin L

H

Lemma 4. If ¥ is a function sending I into I and y(x+y)=
(X} + y(y) for x, y and x + y in I, then y(x) = 8x for some
nhon-negative constant 8.

1
Proof.5 Let y(1)=8 2 0. Then 8= rG +%) = 27{3) so

that 7{%) :g . By induction 7(%) =§. Now for an 2 2,
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Y(l + l]l = 2?(1} _ 2% and, by induction, :.’{-fl_l} === if m <n,
n n n n it il
Suppose now that the assertlion is false, namely, suppose that
there cxists an X such that y{x) = 3x - a, where a 13 a posi-
tive real number. (For a negative an analogous argument holds,)
Observe that (X)) = y{{(x - y) +v) = v(x - v} + ¥{y} 50 that
¥{x - y) = y{x) - y{y), if x 2 y. Hence, for all rational p such

that x* p belongs to [, we have ~

yixEpl=yx) tylp)=BxLp)+a. \

Since a » 0 there exists a posltwc integer N suche ghat Na > 1.
In the open interval 0 < z < ﬁ’ choose any poi nty ‘»‘“'- x *p, with

D 2 rational number, Such a point exists sincé® th{, puints of the
form x* p are dense in I, The poinl Ny pe}onfffs to 1 since
1 v
Ny < Ng=1. By induction one can sho\uf {that 3 {Ny) = Ny (y).
X \
y(Ny) = Ny(y) N[.By4a Na > 1

contradicting the fact that » senda I inte I, This contradiction
establishes the lenyiiy.dbraulibrary org.in

NS

Moreover

Theorem 1. A stocpa‘sii’c operator 8 (for r = 3) satisfies
the combining of cla%es condition if and only if it has the form

(7) \'\‘w’ Sp = ap+ (l-a)r
where X is g’p‘rzobability vector and a is a suitably chosen

constant, 44"

L >

7 . : inge
Proofl The "if" part of the theorem follows easily by showing
that'axi tperator of the form (7) satisfies the combining of
clas&.es condition,
"'For the "only i{" part, observe that Lemmas 3 and 4 show¥

~that
\ (8) vi(x} = Bx+ yil0),

Define a constant @ by means of the equation
r
(9) 2 yil0) = 1-a .,
i=1

We now have two cases to consider, namely & # 1 and @ = 1.
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vi(0)
Casel, @ # 1. Inthis case we set Aj = —L= and note that
A E T, 1-a
Then we have from (8) that yi{x} =8 x + (1-a)xj . Let p be
a prohability vector; then
1 = Syilp) = Z(Bpj+ 1-a)y)
= BTpj + (1-a) ZXj

- _S + (l-a) O
so that 8 =a@. Thus yi(pi) = ap; + (1-a)4; and the operathr)
must be of the desired form (7). O’

Case 2. @ =1. Equation (%) then implies that ~>;yi‘(0) =0
and, since each yi({l) is non-negative, this mearfs"that yi(0) =0
for ali i. Let p be a probability vector; we hawve

1=3yilpy) = ZBpy = .32}?1\\5 53
sothat 8 =a = 1. Then vi(pi) = Pjs j.’é} Sp = p, and hence S
is the identity operator which can ’béﬁw’ritten in the form (7} by
setting @ = 1, RS . )

This completes the proof fo’%‘é"ﬂ{’éi?}-‘é';?ﬂ'a"y-or‘g.ln

For the case r = 2, equation (1) is satisfied for all operators
and imposes no restriction. Hence Theorem 1 cannot be proved
if n = 2. Analogous sitfiations occur in other parts of mathe-
matics in which the lowéer dimensional cases are atypicai, How-
ever, it is frequeptly convenient to assume the operators have

the form of (7),alst when r = 2,
AKX

S OOTNOTES
A )

1, I’n,‘t’he appendix we generalize the combining of clagses re-

'qlfifement to apply to all stochastic operators and then demon-
\sirate that Theorem 1 below is still valid.

2. For typographical convenience we write all vectors as row

vectors, but it is clear from the context when a column vector

is meant,

3. This example was provided by H. Raiffa.

4. A perfect set is a closed set which has no isolated points,
that is, one in which every point is a limit point.

5. The essential idea of this proof was suggested to us by R. 1.
Davis,
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CHAPTER IX

INDIVIDUAL BEHAVIOR IN UNCERTAIN
SITUATIONS: AN INTERPRETATION IN

TERMS OF STATISTICAL ASSOCIATION THEORY~,
by ~

W. K. Estes
INDIANA UNIVERSITY D

INTRODUCTION /50

S

Group decision processes depend, upen the behavior of indi-
viduals, For this reason it is to be éxpected that theories de-
veloped in social sciences andwtheedbesidevelgperyism experimen-
tal psychology will not be unz:ela'ted. Inspection of certain of the
more formalized theories of\gtoup behavior, e.g., theories of
games and economic beha¥ior, reveals that these theories in-
clude, explicitly or impli\citly, assumptions concerning charac-
teristics of individual\béhavior. It isan attractive possibility
that the descriptive,laws or principles of behavior that enter
theories of grqqpliiehavior as axioms may be deducible from
theories of individual behavior,

We note-}bét in a game or an econemic situation the indi-
vidual ig’¢alled upon to predict or to attempt to control uncer-
tain events. The sequence of events may be random or it may
follewsa pattern about which the individual has initially incom-

(lete information, We shall discuss in this paper two sets of
experiments that have been carried out with adult human sub-
jects (eollege students) in highly simplified experimental situa-
tions. The first set will bring out certain aspects of the behavior
of an individual in attempting to predict correctly the outcomes
of a series of situations when the alternative cutcomes occur in
& random sequence (the individual not being informed that the
sequence will be random). The second set of experiments will
bring out certain aspects of the behavior of an individual in at-
tempting to produce an event by choosing on each trial some one
of a set of alternative responses, the different responses having

127
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different probabilities (initially unknown Lo the individual} of
producing the event, In cach case we will show how the data
can be handled in terms of a statistical theory of associative
learning,

It is contemplated that these simplificd experiments may
provide basic paradigms which can be progressively modified
in the direction of situations directly relevant to utility theory
and game theory. It will also be of interest to consider posﬁible
relationships between the model that accounts for the data’g
these experiments and models that are developed in cafimection
with other decision processes. AN

N

od
P

CASE I PREDICTION OF AN UNCERI@KIN EVENT

The experiments to be considered in thi$ section all have the
same basic design. The activity studi€d,is similar in some re-
spects to that involved in predicting-{h¢ results of roulette games
or horse races; there are two important simplifications, how-
ever. In these experiments the\oufcome of the situation has no
utility for the indiwithrall fexd@matatrafibeing right or wrong in
his guess) and the iniormap’ibﬁ available to the individual is re-
stricted to what he can obtain from observing a series of repli-
cations of the situation,

In any one experimeént, the subject is run for a series of
trials, All trials<in the series begin with a signal, S. In some
experiments 5’has been onset of a light, in some the onset of 2
tone, in somé&’stmply a verbal signal from the experimenter. A
short time\(2-5 seconds) following the signal S, one of a set of
alternative outcomes, Ey, Eg,+ .+, E,, occurs and terminates
the txiat. Immediately after the onset of S on each trial the
SUb'j.EC:ct writes down his prediction as to which of the events

&4y Eg,- -+, E;, will occur on that trial; then he ts permitted

\"\zto observe which event actually does occur. The subject is
given no information about the conditions of the experiment ex-
cept that some one of the E;j will follow the signal § on each
trial; he is instructed to do his best to make a good score {in
terms of correct predictions), and to make a prediction on each
trial regardless of how uncertain he may feel about the outcome.
The events Eq, Eg,* « «» E; actually occur at random with
probabilities 7y, 79, . ., 7,, No communication between sub-
Ject and experimenter is permitted once the series of trials has

begun, Trials are spaced at intervals of about five seconds oI~
dinarily,



INDIVIDUAL BEHAVIOR IN UNCERTAIN SITUATIONS 129

The theory that has been applied to this situation with some
success is a statistical model for associative learning that has
beer: developed during the last five years by the writer and
others, In this theory the behaviors available to the subject on
any experimental trial are categorized into mutually exclusive
and exhaustive classes (in the present experiment alternative
predictions concerning the Ej) by means of experimental cri-
teria, Il is assumed that the change in probability of any re-
sponse olass on a given trial depends upon the momentary éfix
viroumental situation and upon the state of the individual as\
defined in the model, When the model is interpreted in téxiis
of the present experiment, it turns out that the rate of learning
(systematic change in probability of making a given prediction}
depends upon the characteristics of the momentagy,.environmen-
tal situation but that over a considerable serieg’gf trials the
probability of making a given prediction tendg\le a stable asymp-
fotic distribution with the asymptotic mean,}fér a group of simi-
lar individuals run under like conditiongjPeing independent of
the momentary environmental situatispy/in the present experi-
ment, the nature of the signal, S, The dependence of pj, the
mean probability (for a group efdikebnsinisuals)gf predicting
event E]-, upon n, the numbey;of *‘previous trials in the serles,

is given by the equation N\
(L p: (n) = .._2?_ ZN 8: [ - F; 1 (O)][1-65]"
p] = T \Né ]'_:1 1 j 1,] : 1

where the 65 réprésent the probabilities of occurrence on any
trial of the N é?wironmental determiners comprising the situa-
tion at the Beginning of the trial, 7j represents the probability
of the oﬁtg'gi'ne Ej on any trial, anti Fi,j (0) represents the ini-
tial prdbbility that the ith element in the set of environmental
deterniiners would, taken alone, lead to a prediction of outcome
p E)\ This equation is derived from certain primitive assumptions
eoncerning the learning process, The assumptions are given in
references [3, 4],

Since the stable course of action arrived at by the individual
over a series of trials is the feature of the situation that is apt
to be of most interest in relation to group decision processes,
we shall consider only the asymptotic distribution of p; in this
paper. It can be seen from inspection of equation {1} tﬁat the
asymptotic value of p; is independent of the initial state and also
of the distribution of '9;. Therefore we can conveniently simplify
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the model for cur present purposes by assuming 2!l of the 84
equal to some value #, which amounts empiricully to assuming
that all aspects of the environmental situation nbtaiaing at the
beginning of each trial are equally likely (o affect the subject.
Then the difference equations leading to cquation {1} in the the-
ory reduce to the following set of linear transformations:

{2} (a) If E]- occurs on trial n, then
pj(n+1) = pjln) + 8(1-p;(0))

(b} It E; fails to occur on trial n, then

O\
'\ “
pjin+1) = p;(n) - bp (n) N

T
£ {

(c) If E;j occurs with probability s t“‘hfé*on't.he average
pj(n+1} = pjln) +6(m; - § )
and we have asymptotically, \\
3) @p(=) = 1 2O
and b) 02 (=) = mit-m) 6/(2-6)

wwwl.d br‘aulv i'bra'f‘y .orgin

It will be noted that thedequations (2} and (3) can be ob-
tained from the linear opé.'r'ator model of Bush and Mosteller 1]
if suitable restrictiops are imposed upon the parameters.

Data from two experiments of the sort under consideration
are summarizedin, Figure 1 below.

The bottom/eurve represents data collected by James H.
Straughan an@ the writer at Indiana University, Subjects were
30 col]eg%:&jtudentsq The signal, S, was a pattern of four lights
which flaghed for one second at the beginning of each trial. The
outcontes E1 and Eg were the appearance or non-appearance
of a‘single light two seconds after the signal pattern. The trials
dniwhich Ej appeared were determined in advance of the ex-

\periment by a random number table with 71 = .25 and w3 = .75.

Each point on the curve represents the mean relative frequency
of predictions of Ey in a block of 10 trials, The three upper
curves represent data from a very similar experiment conducted
by Jarvik [7] at the University of California, with 7 equalto
.60, .67, and ,75 for three groups of subjects respectively. In
Jarvik's experiment the signal at the start of each trial was ut-
terance of the word '"mow" by the experimenter and the two al-
ternative cutcomes, Ey and E9 were utterance of the word
"check' or the word "'plus,” respectively, by the experimenter.
The Jarvik data are plotted in terms of mean relative frequencie®
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B0 K 75

Blockév‘gk“fl alullbl ary.org.in

s.’

Fig, 1. Data from predietion experiments plotted In terms
of mean proportion QT,\El predictions per trial block,
& -
of "check™ predwtmns over blocks of 11 trials. I will be seen
that in all cases\the mean value of p1 levels off in the neigh-
borhood of tHe'predicted asymptote by the end of 60 to 80 trials.
The agre\t\ant of theory and experiment in this instance is es-
pecially’interesting in view of the fact that the theoretical pre-
dictions of pl( ) utilize no degrees of freedom from the data.
Sin{ilar experiments by Humphreys [6], who originated the ex-
edimental design, and Grant [5] report data which are in ac-

ccrd with theoretical predictions insofar as asymptotic means
are concerned, The Jarvik, Humphreys, and Grant papers do
not report individual data or variance estimates,

The reader may be concerned at this point over the fact that
the experimental curves cited represent group performance.
The terminal mean probabilities of Ey predictions by groups of
subjects agree with the thecry in all instances, but according to
the theory, not only group means but also mean response proba-
bilities of individual subjects should approach 71 asymptotically.
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We cannot tell from the group data whether thie fenture of the
theory ts verified. A mean response probalilitiy, Dy {n), egual
to 7y could arise if the values of py {n; tended 1o cluster around
71, but it could also arise if the proportion vy of the subjects in
a group ended up at pq(n) = 1 while the remaindiar went to
p1{n} = 0, As a matter of fact, inspection of ind’vidual data from
a number of experiments run in the writer's jahoratory shows
that the latter possibility can be rejected. To itlusirate this
point, we have plotted in Figure 2 the records of each of\dgroup
of four subjects run in one of these experiments undef somewhat
better controlled conditions than the group studi esd “\Fhe values
plotted are proportions of Ey predictions per tu} {¥ial block,
According to theory, these individual curves, u;a ridless of ini-
tial value, should tend to approach 71 = .85%\2’3'@. relative fre=-
quency of Eq, as learning progresses, Three of the four
records certainly do this; the fourth rechrd is in scme doubt,
not having stabilized anywhcrp by ti\ g\nd of 120 trials,

.5\
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Fig, 2, Individual records from a prediction experiment

plotted in terms of proportion of E, predictions, P(n"),
per block of ten trials, a',
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It may be noted that during the later trial blocks, the plotted
values for these subjects tend to fluctuate around the .85 level
rather than remaining constant, This asymptotic variability is
also in accordance with theory. Since the theoretical asymptotic
probability of E;p predictions is .85, the standard deviaticn of
proportions of Eq predictions per block of ten trials at the
asymuoiote will be expected to be approximately (neglecting a
covariunce term) ~

85X 15 _ .
Vs = AR

"N

In the case of the experiment represented in the lawest curve
of Figure 1, the inter-subject variability around the Mean curve
decreases steadily throughout the series of triald>n the last
two blocks of trials over 60 per cent of the soijeets have py
values (i.e., proportions of Ej predictions)ifrthe range .1 to
.3 as compared with 33 per cent in the finstblock, and the pro-
portions of zero and one values do not increase at all during the
series, ) v’

It will be noted that the course wof*action adopted by the sub-
jects in these experiments doeswmetdmaximize the gxpected fre-
quency of correct predictionsy \Take, for example, a series with
71 equal to .25, The subjects settle down to a relatively steady
level at which they predich E; on 25 per cent of the trials. This
behavior secures the,‘sﬁbject an expected percentage of correct
predictions N\

(25x .25 + 75 x 15)% = 62.5%

whereas the ~‘ip\ure strategy,” in the von Neumann and Morgen-
stern sensd, of predicting the more frequently occurring event
on ail frinls would yield an expectation of 75 per cent correct
predictions,

1t Would be of interest in connection with the broader problem

'obdecision processes to modify the design of these experiments

oh prediction by introducing systematic variation in the informa-
tion available to the subject and in the utility attached to the out-
comes El; E23 ety En.

CASEIl: ATTEMPTING TO CONTROL AN UNCERTAIN EVENT

A group of experiments which are closely related, in terms
of the theory, to those described above, study the behavior of the
individual in attempting to control an uncertain event, In one
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variation of this experiment, two telegraph kevs sre available to
the subject and he is required to choose one or the other on each
trial. On a panel in front of the subject there is mounted a lamp
globe, The subject is told that on each trial one key is "correct
and one key is "incorrect' in accordance with some scheme or
plan that is entirely unknown to him except for what he can learn
during a series of trials, and is led to believe that whenever he
chooses "correctly,’ the light on the panel will tlash, Actually
the light is ocperated by a device programmed by means of'a
random number table so that the light {lash will folloWw Bhoices
of key #1 with probability 7y and choices of key #2ywith proba-
bility mq. A\

As in Case [, a theoretical account of this experiment can be
derived from the statistical model [3,4]. Efr*purposcs of the
present discussion we will give here simply'the end result of
the derivations. If we again simplify theymodel by assuming
that all components of the situation §Mave equal probabilities
of influencing the individual's respb&e, then the changes in re-
sponse probability on any trial afr:e ‘described by the linear
transformations givendig_th table below. Let pl(n) represent

’H\\-’. TEéU 1

the probability of ChOGSIN. \ g?ﬂf “ofi trial n.

NS

Key Chosen Outcome’ Expected Change in pq
1 ) iﬁ}l pyn+ 1) = py(n) + 6(1 - p1(0))
1 ‘\\ Eg piln+ 1) = py{n) - #p1(n)
2" F1 Pn+ 1) = pyln) - 6pym)
(A Eg piin+ 1) = pyln) + 6(1 - py(m)
N\

Thgrhﬁder the conditions stated above, we obtain for the ex-
pecied change in mean probability of choosing key #1

£\ -
N B+ 1) = 8- 7g) + (1- 26 + By + Omg) P10
And for the asymptotic mean

(5) Pile) = o2

2-?T1—?T2

The data reproduced in Figure 3 are taken from an experi-
ment conducted at Indiana University by Marvin H. Detambel [2]
Detambel ran four groups of college students under the condi-
tions described above with the following values of 71 and #2
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Fig. 3. Mean proportion o'f::‘Evl predictions per four-
trial block in Detambel's two-key, contingent reinforce-
ment experiment.  {
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%0 50 0.5
v AL % o 0.67

...\:Fsi‘édicted values for asymptotic mean probabilities of choos-
\i? ‘key #1 are readily computed from equation (5} and the
lues for Detambel's groups are included in the table just
above, In the case of Group IV, which has my = 0.5 and 7y = 0,
we see that the course of action to which the subjects tend over
a series of trials is far from the " pure strategy" which would
be the best solution to the situation from the standpoint of maxi-
mizing successes. Over the last half of the series the subjects,
on the average, select key #1 approximately 67 per cent of the
time, in accordance with theoretical expectation, Under the con-
ditions of the experiment, this course of action vields as the ex-
pected percentage of successes
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67 x B0 + 33 x0 = 33.3¢.

whereas by selecting key #1 on all trials the suhjerts would
have raised their expectation to 50 per cont sucessses,

The behavior pattern exhibited by these subjects may be
better suited, in some respects, to dealing with anvironmental
uncertainties than the strategy of going over to o p value of
unity on the more frequently reinforced response. The "pure
strategy' would be cptimal only if the scquence o envizodiental
events constituted a stationary time series, Actuzlly in this ex-
periment the subjects were not told that the = vaiues’wbuld re-
main constant throughout the series and they had'.rw,\sound basis
for inferring constancy. The compromise solugben’cf the prob-
lem arrived at by the subjects would be advafagnius if the en-
vironmental probabilities were to change @fany point in the
series so that the formerly unfavorable ¥&dfonse hecame the
more favorable, If, for example, the bability of reinforce-
ment on key #2 in the Detambel expériment had been changed
from zero to .75 halfway throughythg series, the subjects would
soon have shifted their response ‘probabilities to a level appro-
priate to the new g{%ggi@gu@giq;%ﬁ.gy}{rational" subject operat-
ing under a "pure strategylof selecting key #1 on all trials
would not have discoveref“that the balance of probabilities had
changed, It is very dotbtful, however, that many individuals in
these experiments work out a solution at a verbal level. Proba-
bly long experie@'with environmental uncertainties has de-
veloped re]ative}y stable habits of response to reinforcement
and non-reinforcement, In this situation it appears that the
subject pro‘céeds as though failure of reinforcement on one key
means tha} the other response would have been correct on the
giverhfrial, although as the experiment is conducted this actually
is’npf‘generally true, Subjects might eventually change their be-
,hgv’ifor pattern, but under experimental conditions they give little
£\ evidence of doing so even over series of considerable length.

" Both types of experiment seem to support the conclusion that
in a simple decision process the human subject tends to behave
in accordance with the principles of associative learning and not,
in general, in the most rational manner as "rational” is conven-
tionally defined. The suggestion arises, then, that in formulating
theories of group decision processes it may be worth while to
draw upon the principles of individual behavior revealed by ex-
perimental-theoretical research of the kind described here

rather than to depend upon common sense notions concerning
characteristics of individual behavior.
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CHAPTER X
ON GAME-LEARNING THEORY
AND SOME DECISION-MAKING EXPERIMENTS

N\
by .

Merrill M. Flood ,\. K
COLUMBIA UNIVERSITY* .\«

Y
1. INTRODUCTIONS NV

The theory of games [14] provides ‘g}}n'eral mathematical
model that may sometimes be used}b‘%pproximate a real situa-
tion. Most often, in real cases, the situation is much too compli-
cated to permit formulation eveniconceptually as a formal game.
In the few cases that can be JPHSANHASE 1Y pr@imost always
impractical to attempt gathering the necessary data or to do the
elaborate calculations reguired for a solution,

The non- constantqsxfm case, even with two players, remains
unsolved in the senge-6f von Neumann-Morgenstern. There are
theoretical proposals that dispose reascnably well of the two-
person case, and’of many other broad special cases; we have
discussed some of these in another paper [8].

In this/paper we investigate game-like situations in which the
playerg(are limited biologically in their choices of moves. These
limitétions are reflected in the method of play of the formal game
and-stem from the notion that animal organisms seem to learn by

M‘S?\(ﬁe sort of conditioning process that alters the probability that
3
*This work was dane while the author was with The RAND
Corporation, under Project RAND of the Department of the Air
Force, and the results were presented in July 1952 at the Santa
Monica conference on decision-making. The present paper is a
condensation of an earlier memorandum [9], and was prepared at
Columbia University while the author wag with the Behavioral
Medels Project of the Office of Naval Research. Grateful thanks
are also due to Dr. D. R. Fulkerson for a careful reading of the
manuscript, and for many heipful comments during the course of
the work,
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some one of several mutually exclusive alterndauves will be se-
lected in each new instance,

This approach was sugrested to us by ihe wark of 1. F. Bales
and A. S. Householder [1]. |2] on tire group inleraciion process,
and is closely connecled with the work of R. R. Bush and C. F,
Mosteller [4] on mathematical models for leariting.  We have
profited from discussions with all four of thece men., There is
also an interesting philosophical discussion of stochnstic leapn-
ing models in & recent paper by D. M. MacKayv |12], and a Stimu-
lating essay by E. G. Boring [3] on "robotology'; both of thege
latter papers seem to support our methodologicul vie--,ii;:mint.

LN
7 %4
S

2. GENERALITIES L%

The approach used in this paper is appliceble to gituations in-
volving more than two organisms, but we Shall concentrate some-=
what on the two-player case. A player'}ould in fact be a group of
people, or a component of perSOIlalifi’{*'ithiﬂ one individeal, but
we only touch upon suchd‘i)nteﬁ%r fakibns, Since our main chject
is to treat some oné case l@f‘reé .rﬁ/é%l:f\}li%r, we shali usually be
content with a discussion intérms of 2 special real-life situation,
leaving broader interprelations to the reader.

The connection with game theory is the correspondence be-
tween the notion of ghidiee of a strategy for a game in normal
form and the nOtiOp%f individual choice of course of action in
biological activitp,) A very fundamental case, and perhaps the
simplest one,.is} the problem of choosing whether or not to act
in a situatigfizivhere there appears to be only one choice: acting
or not agting” For example, in experiments like those of B. F.
Skinne;’h‘s] with rats, the choice at some moment is whether or
not taspress a bar. For a human example, the choice might be
wl}e“ther or not to accept a particular offer for a new position.

Nnjthese examples, and in most real-life situations, the organism
somehow reduces its range of alternatives to a relatively small
number from which it feels it must choose.l It is this recog-
nized field of choices, whether they are considered to be con-
scious or unconscious alternatives, that corresponds to the set
of strategies listed in the normal form of the formal game,

In what follows, we shall try to use such terms as "game",
"strategy”, 'move", and “'player" from game theory only with
the meaning attached formally by von Neumann and Morgenstern
[14]; for other purpeses we shall use alternative words such as
"situation", "plan™, "act", and Y'subject,
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3, THE PROBLEM

The games in which we shall be interested are defined in
terms of expectation functions:

:; = vl .
Vl = V‘iilz .o ln

for {lk = 1, 2:"'!mk;j:1} 2:' ",1'1).
A play of the game consists of simultaneous independent choices
of specific values il?( for the ik by the n players. The quantity
Vjio i5 the expectation for player j, where the units for V%D fet
late to a measure of the utility attached by player j o tha,}jay—
Jnents he receives. The functions V}i are real-valued.()

The zctual payment to player j, ~when the choiceof pure
strategies is i, on a play, is 2 quantity x given bysthe ‘distribu-
tion function P'{x) whose mean value is vl Offcourse |x| is

1 1 $ }
bounded, so that ’

Pl(x)=0 if x| >E'\{~:>>\o

Our problem is to select a good mefhod of play that can be used
by player £ when his informationebrat e stragfure of the game
is knowledge only of JON
"
and where his informaii{;n about the distribution functions Pll(x)
is gained entirely K{i‘m’his experience while playing the game.

It is customapily‘assumed [14] in the process of passing from
the normal to tha.éxtended form of a game, that only the mean
values V! of'thiese distributions affect the situation; we could
even aSS&n"iBWithput essential loss of generality, therefore, that
the varignge of Pl(x) is zero so that x only assumes the value
Vi F&hermore, since the problem is essentially unchanged if
the.ftility measure x is subjected to a linear transformation we

4c8uld also take bl = 1 and suppose that P]i(x) =0 if x<0 or x>1.

and a hond 54 > max E{g>0,
S i

) 4

\ The experience gained by player j in N plays of the game
consists of a record of his own choices ij{t), and receipts r;(t)
for t=1, 2,--+, N. The central problem is to find a rule ©
play that will tend to maximize total receipts in a sequence of
plays where the player is given some information about the num-
ber of plays before he starts on & sequence; we are intentionally
vague af this point about the exact nature of the rule of play and
about the advance information concerning the length of sequence.

We shall be interested in what follows, then, only in the game
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whose normal form has the expectation (unctirms

0<vl<t.
1

We shall be especially concerned with one cxtended iorm of this
game in which there is one chance move for each player and the
actual payments are always unity or zero, whence the nrobability
of a unit-payment to player j is Vll if the players choose th
pure strategies i. We have noted that any game cun he redgeed
to this form by suitable linear transformations on the uUZlity
measures of the individual players, provided only thit\thefe are
known finite bounds on the possible payments; use Wa¥ zlso made
of the assumption that games in extended form a,fe equivalent if
their normal forms are identical, R4

4, THE GAME-LEARNIN@‘MODEL
NN\

The type of rule of play, that isGhwestigated here, is repre-

sented for player j by the relatign )

plit + 1) = nviBgifhreplibegry.ongin o . 2m; + 1,
where pl{t) is an m;+1 difensional probability vector and the
M are given square stuchastic matrices whose elements are
non-negative real pumbers that sum to unity in each column.
The components pi{t), for i=0,1, 2,- « -, mj, are the proba-
bilities that playe® j selects value i for i; on play t; pi(t) has
a special sighifidance to be discussed later. )

We nowdescribe how the appropriate operator Mt is chosen
after p aY'\f.' The matrices MIP are first separated into two
classes\of mj+1 members each, denoted RIK and Pik for
k=04l 2, 7 -, mj, and either RI }j{t) or pi ij{t) 5 selected;
the“choice between these two matrices is made with probability
rift) in favor of R} ), 1n the special case in which rj(t) is al-
ways 0 or 1, we can write the rule of play in the form:

plt+1) = {rjit) ®RI GO 4 (- ryie)) ©1 50} pliny,

We have defined a method of play that can be used by any
player after he has made his initial strategic choice pi(0), and
after specific values have been assigned for the elements of MY

in actual practice he will need to know my and Bl also.
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5. THE FUSION GAME-LEABNING MODEL

We shall now consider a special parametric form for the
matrices M. For convenience, we shall henceforth omit the
designation of the player when this leads to no ambiguity,

We set:

il

Rﬂi?ﬁ (-bl- ci)6a3+ciéai+bidao, and
Q!

PEHB - al}éaﬁ+alaa1,
for (i, @, 8 = 0, 1, 2,- -+, m), where al, bl, and cl aré i dhe
closed interval [0, 1] and 5g 8 is one or zero according as a=f§
or not. This special form of the more general Mgti-kmr game-
learning process was developed by Bush and Mﬁtéller [6] s0 as
to fit data obtained in a number of learning expetiments with rats;
they have named it the 'fusion model." \

Wa zhall be interested in the case irg,wl}iqh all but one player,
say number 1, choose constant strategies p!, but where player 1
uses the fusion model. This meang'that the px;)%babmty that
player j >1 will select the vatug\i, for i; is pi on each play,
and for player 1 it is pil(t). §i§§fe leasuéll%ﬁ%iﬁe%%i‘b all made
independently it follows immediately that the expectation of
player 1, if he chooses t@e’vé.'lue x for i; on play t, is:

mga *\ mpy 2 .3
s \J ; n
GX = Z ‘\\:". . .2 V}uz' ‘o j_n P12 P13 . - -Pln-
ig=I\ ip=1

N

We may suppe$é, without loss of generality, that:
O
\;';\3' Gml > Gml-l - 2Gy.
It fallb;s that player 1 could do no better than to choose
O L) - bimg
\ 3

50 that his expectancy on each play is Gml‘ We shall be inter-

ested in comparing his expectation when he makes use of the

fusion model with this maximum possible expectation Gp,; of

course, his success with the fusion model may also depend upon
his choice of the starting vector p”(0}.

The component p%,(t) is interpreted in the game gituation as
the probability that no choice will be made by player j at time t.
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This feature can be introduced mathematicaliy into the game
model by delining:

vl = 0 if any component of 1 is zero.

where the range of i has been extended to include zero. This
augmentation of the original game problem will be vsed whenever
the fusion game-learning model is under discussion.
Q.
6. A SPECIAL FUSION MODEL (NN
7N\ “

We shall now consider a specialization of the &ugion model in
which al, bl, and ¢! are positive and indepengigﬁt of i; we denote
their common values a, b, and c. We shallal¥o suppose that the
quantities Gy, for x=1, 2,- - -, m, are dishnct and non-2ero,
and that Gy = 0. WA

The expected value of pt*l, given'\hf} is:

m : ~ \ v 4
th = {&@odﬁa@aﬁ@gai;fo[‘lgfﬁa] ) } P L.

This can be rewritten to gield the following relation for the k'
component of the expegted value of pt+1:

t+1 9 t L
E(p) = pk + (a-Boe) X pl Gy pj+ (c-a)Gppk + b X paGoOkdr

N\ o =0 a =0

for k =0, ;1;‘,‘2,’- T, m,

It foliGs easily that a vector vh satisfies the equation QV =V
if angi\\ijt?ly if it is the unit vector e, or has the following form:

yg’ = rz_*a—, and V{l = (1-Vg)ﬁhi for (h,i=1,2,* - ", m).

\/ Bush and Mosteller [5] have called the matrix Q the "expected
operator™ and they have made use of the vectors vh in discussing
the asymptotic behavior of pt.

Rather little is known concerning this asymptotic behavior, and
still less is known about methods for estimating the parameters
in the fusion model from experimental data, so we shall have to
resort to Monte Carlo computational methods in our exploration
of the properties of the fusion model. For this purpose, we shall
furn to some numerical examples.
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7. A RAT EXPERIMENT

The rat Su must choose cone of two rooms,

145

Five seconds after

a warning bell the rat is either rewarded {fed) or punished
{shocked) by the experimenter EX, and Su does not see what the
resuit would have been had Su chosen the other room on that

particular trial.

Ex rewsards or punishes according to a rule prescribed in
advance. The experimental situation may be summarily de« O\
scribed as a two-person game. The payoff matrix for Su js:

Ex Places food in:
Su Room 1 | Room &)
Sits Room 1 1 vy
in:
" Room 2 - »1
m ¥ x\\
N

S 3

N

RO

'\
L &

At the moment, we are not interested’in the payoff matrix for
Ex but shall simply suppose that\Bdbmsldhassuoagstrategy (71, 12)
such that Ex places the food iftRoom i 1007; per cent of the
time. The expected payofi.for Su is then V{py) = p1(2m-1){1+y) +

{1-7y-ym), where y ispen-negativ

e and p; denotes the propor-

tion of the time Su sit§\ih Room i. Now in this situation, even if
anintelligence, game theory would give Su
little real help if\chbosing a strategy because there is no mean-
ing to attach_tothe notion of payoff matrix for EX. Even if there
were a payoff\matrix for Ex, the game would probably be non-
constant séf and the value of ¥ would vary from Su to Suas
well as\feom time to time, and be difficult to estimate. Never-
thele&;é,\a rat or a human found in this situation does behave in
somB*¥ashion, and our scientific problem 1s to explain and pre-
d\rci‘ actual behavior as well as possible,
\ ’ Before turning to the game-learning theory approach, it may
be instructive to discuss the situation in the usual manner, from
the standpoint of rationality. For example, if 71 = 1/2, it does
not matter what Su does, since the result is independent of his
choices. If wq # 1/2, then Su should choose Py = 1orp =0
according as 7 >1/2 or 7y < 1/2. On the other hand, if Su
feels that its past behavior (inciuding its biological characteris-
tics) may be analyzed intelligently by an Ex that strives to mini-
mize the payoff to Su by choosing a time-dependent strategy in
terms of past behavior of Su, then Su should somehow protect

Su had superior h



146 DECISION PROCESSES

against this unwanted result by concealing its pattern of behavior
from Ex (perhaps by randomization as proposed in the theory of
games). These dynamic cases are entirely outside the scope of
present formal game theory, of course, and are the principal
cases of interest here.

The basic assumption from learning theory is that Su varies
its behavior according to the pattern of its past experience, The
special mathematical form assumed here for this effeci is the

special fusion model of section 6, with m = 2. The matrices Rll
and P! are, therefore:

L\
l-c b b 1-c b :"}b'
RMI = c1b ¢ |, RI2Z . Olbﬁ:{)
0 0 1-b-c C, \\ i-b
l1-a 0 0 ) l—a 0\
plt ., | . pi2 P
0 0 t-a a a
www.dbrauliirary org.in
1 a a f'}; ’
PO - [0 3.2 o0}

N

0 0 Q-a
R i \o .
15 used aftem Rbom i is chosen when the food was placed

there, and Pl ss’used after Room i is chosen when the food was

not placed thére. oOf course, Ex, as player 2, may be repre-
sented bg"the relations:

§ 0 100
Y %0 = | 4y ), andRE - p%oZ {01 0

'"\:,,:‘
1-1r1 001

Y

The 7; correspond exactly to the Gy of section 5. In this case,

Ted Harris has shown (see [9]) that the asymptotic value of
pl(t) is

1

eo = | 0} if 0<ny <1
0
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whatever the value of pl(O); indeed, the probability is 1 that
there will eventually be an unbroken sequence of applications of
PC that terminates the process.

Monte Carlo computations were made for this model with
numerical values for the parameters, chosen in agreement with
estimates by Bush and Mosteller [6] on the basis of data from
learning experiments with rats, as follows:

a=b=d=0,01, ¢=0.10. ~

These computations were made for a rather careless asgoOxtment
of values for p1 (0} and 7y, and the main results are shown' in
Tables 1A-1G. All the computed cases show a strong tendency
for p;, to seek an equilibrium near the value 0.1, and it is in-
teresting also that pg seemed always to go to qu:o’ when »q>0.5;
this constitutes a tendency toward optimal heha¥ior since only
choice of Rooms 1 and 2 represent actual depisions by the rat
under cur interpretation of the fusion maodel”

AN

S 3}
NN

TA% £ raulibrary .org.in

Stat-rat Strategies

*

1A: 71y =0.5 1C: 7y = 0.5

t | p BNy P2 t Pp | P | P2

0 | tog %450 { 450 0| 900 | 50 | 50

5 1 99 555 | 350 5 | 895 | 58 | 47

10 ,Coa | 450 | 456 10 | 900 | 53 | 46
}\Q“..\* 91 | 512 | 397 30 | 900 | 52 | 48
A0 | 108 246 | 446 60 | 692 | 281 | 25
~O 1B 7 =05 90 | 355 | 374 |271
~ l pg | o1 ] b2 120 | 193 {472 |335
0 0| 500 | 500 150 | 111 | 589 |299

5 | 19| 579 [ 402 180 | 139 {722 |139

10 | 46| 617 | 337 210 | 97 | 762 |141

30 | 86| 673 | 241 240 | 98 | 866 | 36

60 | 106 806 | 90
90 97 | 869 | 33
115 97 | 897 4 |
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TABLE 1 {Continued)

1D: wy = 0.51 1F: m; = 0.9
t Po | P1 | P2 t po | »y i’:%__]
0 | 800 100 | 100 0| 900 100] o0
5 | 717 | 196 | 87 5| 735 | 265 | o
10 | 717 | 202 | 80 10 | 744 | 256 &
30 | 398 337 | 265 | | 30 | 593 | 406¢[) 0 |
60 | 837 | 497 |165 | | 60 | 126 | g7¢| o
90 | 148 | 606 [ 247 ' | 90 | 10¢M8B4 0
120 | 116 | 815 | 69 | | 120 |.°(90 | 908 | 0|
150 | 98| 893 | 9 1500111 | 889 | 0
| 180 | 115 | 623 | 262 | | 180", 92 | 908, O
210 | 98| 371 | 81 | {DB10 98 | 902 0
240 | 88 ""Qﬁ%‘di“:'r'a;;brﬂ”'%‘lf’ﬂi“ 101 | 898\ 0 |
1E: 7y = 0\255 1G: 7y = 1.0
t Poc {1 | pg t Po | P1 | P2
O | 880 | 100 | 100 ¢ | 114 | 100 | 786
5 \21 | 193 | g6 5 [ 109 | 96 | 795
{,1\{;}"‘ 856 | 262 | 81 10 | 104 | 179 | 715
~.~§30 411 | 439 | 151 30 | 107 | 716 | 177
AN 60 [ 230 [ 715 | 45 60 | 99 | 892 8
90 | 118 | 875 T [ 80| 107 | 892 t
120 | 98 lgor | 1

8. HUMAN SUBJECTS

_All that has been said about the game-learning model is ap-
plicable in the analysis of experimental data with human subjects.
T.here may be a considerable advantage in using human subjects
Since the conditions of the experiment can be explained to them
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easily, and because their choices are made quite rapidly. Some
very tentative trials were run in order to gain some experience
with the experimental situation, as a first step toward a design

of more conclusive trials.

In the [lirst series the subject Su was asked to call "head" or
"tail” in an attempt to match the random choice made by Ex with
fixed probabtlity 71. The success ol Su was compared with that
of the special fusion model (stat-rat) used in section 7, where
random numbers were used to yield ry = 0.55. The number aft\
trials was too small to permit any quantitative conclusion to be
drawn, but it seemed likely that a more extensive serles of/)
trials wouid be worth while. The scheme was dlscontmued in
favor of more promising ones to be discussed next.,/~§

The general 3x3 zero-sum symmetric game,,whlch has no
pure strategy as a solution, is represented by, a~‘t~hree parameter
paycif malrix for its normal form:

" u —}R’.\\"
AN\

v={-u 0w

v \-{,\:\’Fx‘-’}ﬁ’dbraglibrary,org,in
where u, v, and w are positiv€® The solution of this game is
the unique mixed strategy: 3%

.

A W, v, W,
A\ VW

There were three trials in each of which a subject played a 3x3
Zero-sum symmet:rlc game against the stat-rat, as defined nu-
merically for{ Ehe special fusion model in section 7. For these

trials; ¢4
:"\s v

(a) T‘i}e"absolute values for u, v, and w were taken directly
{rom a table of random numbers;
db}* The subject was not told the payoff matrix but was told
\ Y™ the exact method used to select it;
{¢) The subject was told that he was playing against a rat in
mathematical form.

The three payoff functions were:

Subject u v w | Solution

RF -6 6 8| Col. 2
MD 6 -8 7| Col. 1
MF 6 10 -4 | Col.3

—
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These three games each have a pure strategy for a sclution, as
shown in the final column of the table just preceding. The recults
of the three trials are summarized in Table 2. The trend in the
stat-rat's mixed strategy is shown for each game in Tabile Z,
along with an estimate of the mixed strategy in use hy the sub-
ject based on the average of his ten choices centered at the play
listed. Again the data are too scanty to justify careful analysis,
or quantitative conclugions, and this type of trial was discontinued
in favor of a more promising one to be discussed next.

O\
NS ©
TABLE 2 A
3x3 Symmetric Games “\ 3
) ¢
RF game MD gafné MF game
RF | Stat-rat MD:’%‘L‘;H— rat| MF | Stat-rat
No. of plays 19| 19 |og5Y| 25 20 | 20
No. . Ni\®; :
©. of wins W\-.Efiw dbralnﬁibr'aryérg.in 20 10 10
Percentage wins | 32 | 68% | 20 80 50 50
Through Play \ Fredquency of Use of Sclution™
1 S~ .33 - | .33 ~ | .33
6,27 | 3] .45 4 | .61 8 | .55
o 4| .58 5| .68 |10 | .66
\,§~1'5 .8 12 .6 10 1.0 Li0
';;;. 20 - | .16 |14 — .80
{ 25 - - — | 14 - -

o

*For the stat-rat the frequency through play x is computed
as the ratio of

p§0] + (1-13%) '

and for the subjects it is one-tenth the number of wins in
the ten plays centered at play x.
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There are really two rather different types of problems in-
volved thus far in our discussions of game-learning situations
in which the payoff functions are unknown:

{a) {Static) Those situations in which it is assumed that the
opponents of the main player choose and use a fixed mixed
strategy for the duration of a sequence of plays,

(b) (Dynamic) Those situations in which it is assumed that
the opponents of the main player may vary their strategic
hehavior during the sequence in a manner that somehow
takes account of the results they obtain on earlier plays.

N\

The static case, with known payoff functions, is the usual one
considered [14] whereas our interest centers here Qit\the dy-
namiec case with essentially unknown payoff functions. The
static case always reduces to one in which thex@is a set of
numbers G, in the closed interval [0, 1], thatrepresents the
payment expectation if our main player che@)s‘es pure strategy X
on a given play—and the numbers Gy rew#in constant for the
sequence of plays; the dynamic case tdkes the same form except
that the numbers Gy may vary in some manner that is dependent
upon the choices made by our rh"si“fﬁ' Bprgub R preEEdihg plays.
The game-learning mode! is equally applicable in either the
static or the dynamic case. ~3"°

The game of Morra [7{ Vs a convenient one for our purposes
both because it is of l;gnew size (9x9) and because it has been
completely solved, e static case was examined experimentally
for Morra by havitig two subjects and the stat-rat play the game
knowing only thdb it was 9x9 and symmetric, and that their op-
ponent would fiot be using a game-theoretic solution, Subject BC
had no knowledge of game theory and Subject RB is a mathemati-
cian whgNis-expert in game and decision theory. Actually, a fixed
Pure strategy, not in the solution mixture, was used in opposing
the subjects and the stat-rat; it is represented by the following
&ebof values for Gy that were used against BC and the stat-rat,
these for RB being 2/3 as great:

Gx = {,500, .500, .833, .250, .250, .500, .500, .500, 1.000}.

The results of play are summarized in Table 3. The data are
still too skimpy tc permit any conclusions to be drawn.

There is no particular reason, in the static case at least, why
the experimental values chosen for Gx should come from a game
that has a well-known extended form. Consequently, we have
come to the following type of experiment as the most promising
One to use in obtaining data on the behavier of human subjects to
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be used in estimating parameters in the fusion models and thus
eventually to test the hypothesis that this mathematical model
represents human learning behavior., The Gy ure chosen (rom
a random-number table and the subject then is asked to play a
number of times fixed in advance in an effort to muximize his
total number of wins; RB and AM, both experis in the relevant
mathematical theories, served as subjects for trials in which
there were 1,000 plays and:

DECISION PROCESSES

N

GX = (.04, .03, .25, .61, .64, .33, .44, .44, .75, 4l .
K@\

N -

TABLE 3
Static Morra \\
RB BC Statorat 1 | Stat.rat 2
No. of plays 67 | 312* | {029 43
No. of wins 24 213 340 14 21
Percentage wins 40 57 \J 48 49
wwlw.dbraulibrasy’ory.in
Through Play Erequency of Use of Solution

1 -3} - .100 .190

5 Fe 2 OTT .188

10 i~> .6 1 .058 L1556
N [ I ,030 260
30O -1 a .017 304

60, — .1 S —_

o :;' - ‘1 -_ ———
~(i%o — | 2 — —
LN 150 — 2 —_— —

- .

AN 210 - 2 - —
270 — A —_
330 — .2 —_—

*_The subject announced at thig point that he would con-
tinue playing pure strategy No. 9 indefinitely, and so had
in effect "solved"” the game. RB made this tentative de-

cisiqn after 32 plays and used the other 35 simply to
confirm his decision.
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The results are given in Table 4; it seems unlikely that the stat-
rat would match this performance, but it would probably take a
good many trials to give a statistically significant test of this
conjecture.

One static-nine game has been played by the stat-rat with ten
replications., In this play, p§ =0.1 for & =Q.1,-+ -, 0.9, and
the vaiues for Gy chosen from the random-number table were:

G, = (.097, .510, .433, .274, .442, .364, .503, .929, .256) .

This was the first IBM machine run and the computations were
carried to eight decimal places for two hundred steps eacH. ™I
nine out nf the ten cases, the value of p200 was essent;al,l}r such
that p§00 = 0,9, ngO = 0.1; in other words, the statzrat had
reached the o%timum strategy in 200 trials. In the fenth case
the value of p29Y, if rounded off at the third der;iqu\l place, was
essentially pg09 = 0.9, 1:%00 = 0.1; in other wotds, the stat-rat
had reached a very poor strategy in 200 trjals, Other details of
this run of static-nine are given in Table®including the ""win-
ning rate” w! which represents the expectation on the first de-
cision after time t, where: N/

X

wy@QLdbrauMbrary.orgjn

Y
A e G
el i=l
W\~ = 9—-—'_.
,i“t Z p§
i=1

L\

0 TABLE 4
N Static-10-Game
O RB AM
A% No. of plays 1,000 | 1,000
No. of wins* 719 715
Percentage wins 71.9 71.5
No. of last play before 133 204
deciding permanently
on strategy 9

*Based on expectation after decision to play strategy 9
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TABLE 5

Static-9 Game

Average Game ﬁumkaer
exel, E T
Ttem Game 9 | 1| 2| 3| 4 5| 8| 7 8] 9]10
Time at which i : .
winning rate P i \
first exceeded: :
.84 59 41 | 29| 58 | 88, 98 | 85 |72 | 58 (|26
.90 81 97 |41 | 88 | 99 |111 | 76 |9z [ga) = |36
Winning rate ¢ ’$
at time: ~.? ; : :
50 70 87 | 84| 73 | 44| 58 | 6% 59 T4 36 62
100 91 90 | 93| 92 | 90 | 82 Nag | 91 95136 | 93
200 63 |93 (93|93 |93|.pa) o3 |03 lo3 3693
Percentage wins 1 \ v i T
in: PN : |
100 decisions| 171 63 |85 | 7NYS7 . 57|75 |65 |75 38 86
. NI aulihfaky lore i :

200 decisions| 827 [ HFAGRLHY (48 105 | 83 g0 |83 38 91
P20 | .100  [.108091!.092(.106.101|.093.104].096 695,110
p2l0 097 £h050/(,100(.092/.105| .105(.100",0921.091 .093|.098

;092:.091 0897 |
No. of thinking \\" i . . )
steps for 200 | : P
decisions:  bBs |23 |35 |15 |29 27 18 |22 2 | 14 |29
O
\:”\5.

_>\The dynamic case is perhaps the most interesting one ex-
2\ p\erlmEntally, especially where a fusion model is pitted against
\/ @ human subject, Before going too far with such a program, it
will be necessary to develop a better mathematical understanding
of the models in order to design the experiments so as to permit
statistical significance tests to be applied; this point has been
discussed by Bush and Mosteller [5], and they and others are
gradually developing some of the mathematical tools that are
needed. We have some of these experiments under way with
human subjects, using Morra and other games of about this com-
plexity for the purpose. It would be interesting also to run some
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trials of exactly the same sort with real rats {e.g., playing
Morra against the stat-rat).

9, AGAINST THE STAT-RAT

We have seen how the stat-rat is able to play any game with
known hounds on the payments, even though we have not been
able to settle the question concerning its degree of skill at Q.
games. We shall now be interested in how best to exploit this
knowledge of the procedure used by the stat-rat in playing 'g’\ames
when we are its opponent. Of course, if we know the e)’:p'e.étation
functions and have computed the solution of the gamegthen we
can guarantee at least a certain minimum result by mhoosing the
game-theoretic solution; our object is to do pettet\than this safe
solution guarantees, and we also should like to know how to play
when we do not know the expectation functions:or the theoretical
salution, &

AS a special case, consider the ordihary game of matching
pennies. We start with the reasonable.dssumption that the ini-
tial vector for the stat-rat is: w¥udbraulibrary.org.in

SNVY .45
pl{ofS= | .45}
N\ -1

To make the game ¢ "b'e;;'d:afinite, in our usual notation, we note
that the game is ushally represented by the expectation functions:

(26,5, - 1, and Viip = 1- 284y

Vitlig: \
We transfoffthis game into an equivalent one, in the sense that
Hnear tramsformations on the individual utility functions leave
the solmtions invariant, by setting:

4 0\' $

Q 1 _ 1 =1 - B

\V Vig = 3 Vigig + 1) = igiy 20d
2 1 42 1 b
Vg = 3 (Vijig+ D) =1 Oiyip -

No chance rpove is really needed, in this special case, since the
values of VJi i, Are all zero or one. Finally, we gpecify that

there is to be a sequence of N plays, and our problem is to
choose a method of play that will maximize our expected pay-
ments against the stat-rat. Since we can compute the p (t) for
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the stat-rat at each stage, except for the steps when pl has
effect, it is not difficult to find a method of play that gives us an
average expectation in excess of that obtained if we play strate-
gies 1 and 2 with equal frequencies. Such a good strategy would
be for us always to play the strategy that is less likely to be
chosen by the stat-rat. We shall not pursue this very simple
example further, except to note that it becomes immediately
more difficult if we do not know pl(O) or if the cxpectation

functions are represented in the equivalent form: Q
9V}112 where 0 < 8 <1. .\1\
'\
11, SUMMARY D

This is a preliminary paper. In it we Ha¥ shown how 2
player can "learn”, during the course o;’.Q\Sequence of plays of
a game, to improve his strategy. Th’e’\f’ﬁsion model developed
by Bush and Mostelier to explain ohServed behavior of rats in
experimental learning situations,was used as the basis for both
a theoretical and experdBEdRRWErfriftion of the efficicncy of
this type of learning processdn learning to play games, The ex-
periments discussed here‘fwére with human subjects, and their
game-learning performance was compared with that of the "'stat-
rat" represented by ihe fusion model with numerical values of
the parameters es{ﬁh&ited to fit experimental data for rats.

The theoretical 'models accept basic agsumptions of von Neu-

mann-Morgensfern game theory and Bush-Mosteller learning
theory, including:

{a) Gam'}s with identical normal forms are equivalent, and
this ivalence is independent of the probability distribution
fur;qt}ons associated with chance moves,
;.\*(b) Games that differ only by linear transformations of the
‘"\}ndividual bayoff functions are equivalent.
(c) Learning is a Markov process.

Equivalence here means that the games have the same solutions.
The experimental results consist of Monte Carlo computations
for the stat-rat, contests between stat-rat and a human subject,
and comparisons of performance of stat-rat and a human subject
gl}:in playing the same static game. Very limited data indicate
(a} The stat-

rat usually learns a good strategy when a con-
stant mixed-

strategy is played against him, In Morra and the
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other games played the stat-rat seemed to settle on essentially
the best sirategy within 200 trials or so.

{b) A person proficient at games would win against the stat-
rat in Morra.

{¢) The stat-rat does reasonably well in a static game, in
comparison with the human subject, but a statistician would cer-
tainly defeat the stat-rat.

More extensive experiments are in progress, and it ie hoped\
that these may provide the data necessary to estimate parameter
values for human subjects and eventually to test the adequacy, of
this type of Markov process for description of human le‘g’rniﬁg.

It seems very unlikely now that such a Markov process§ will be
adequate. PN\

$°4 2

N\
FOOTNOTE D)

1. This process has been most systen}alﬁix}ed for the art of de-
cision by military commanders [10]([11].
wyidbraulibrary org.in
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CHAPTER XI

REPRESENTATION OF A PREFERENCE
ORDERING BY A NUMERICAL FUNCTION®

Q)
by RO\
Gerard Debreu O
COWLES COMMISSION FOR RESEARCH IN ECQNGMICS

1, INTRODUCTION

v

1t has often been assumed in economics that if a2 set X (usu-
ally in the finite Euclidean space of commodity bundles) is com-
pletely ordered by the preferences of some agent, it is always
possible to define on that set a 1.4 é\?af‘lau@g%?&%'f’fﬁx‘@serving
funetion (utility, satisfaction}, This is easily seen to be false.

The particular case wheréthere exists on X (the set of
w) a certain algebra of combining {corresponding to
the combination of probabilities) has been rigorously and ex-
tensively studied hy ¥, won Neumann and O. Morgenstern [7],

T, Marschak [6], I.\N. Herstein and J. Milnor [5].

Bui, ratherspatadoxically, the general case, which is more
basic and simaplér, has received little attention from economists,
H. Wold's study [8] indeed seems to be the only rigorous one;
its aSSuﬂi\&tions are however restrictive.

This}:note gives conditions under which a complete grder

4 .\' >3
¥Based on Cowles Commission Discussion Paper, Economics

40 (April, 1952), This article has been prepared under con-
tract Nonr-358(01), NR 047-006 between the Office of Naval Re-
search and the Cowles Commission for Research in Economics,
to be reprinted as a Cowles Commission Paper.

T am grateful to staff members and guests of the Cowles
Commission and very particularty to L. N Herstein for their
comments, I owe to P. R. Halmos reference f4]. My greatest
debt is to L. J. Savage who suggested, in the course of a valu-
able discussion that Cantor's postulate X < zj <Y (see Lemma
II) might be weakened to x = zj = ¥.

159
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(denoted by £} can be represented by a numerical function,
The most common preference ordering in economics is that of
bundles of n commodities, i.e,, of points of an n-dimensional
Euclidean space. We shall however treat the problem in a more
general frame since this involves no additional mathematical
cost.

The familiar case of a set in a finite Euclidean space is
covered by the following proposition which is a very special ap-
plication of theorem II below; Q

Let X be a completely ordered subset of a finite Euglidean
space, If for every x' ¢ X the sefs {xe X|x % X'}, I¥euX | X < X}
are closed {in X), there exists on X a continuoug\r&al, order-
preserving function, \ 3

The assumption that the set {xe X|x' £ x«}\:, closed (in X)
is equivalent to the more intuitive assumgtieh: let {x%) be any
seéquence of points in X having a Iimit,z(Qé X, if for all k, xE
is at least as good as x', then x© is at least as good as x'.

%
"

2. TWO HEPHEEENTATION LEMMAS

A complete ordering o :’X' is, to be precise, a binary rela-
tion, denoted <, satistying

1) Given any two e],e'jr'nknts 5L yof X; x
2) Given three eléments of X such that

From this.r‘gl&tion can be derived two new ones:

€ vy and/or v € x
x <z

¥
Sy, y £z then x%

N

X
"fg..y {x indifferentto y) if x § y and y < x
Ly (y better than x) if x € y and not y &

Tb‘{ﬁl‘_ﬁﬂ! set X/ hi-e-, the set of indifference classes in X,
willibe denoted by A.2 The trivial case where all elements of

<‘:‘5§;?rebindifffr;n; (i.e. where A has just one element) will al-
ways be excluded,

The interval [x', y'] is the set {x e X|x' < xS v}
The interval Ix', v'] is the set {xe XIx<x<y'},

A regl—v%lluecé function ¢(x) defined on X is said to be order-
preierwng if x>y is equivalent to #(x) S ¢ly).
{ natuzalttopology on X isa t0p010gy3 for which the sets
Xe Xix3x'}, {x e X|x < x} are closed for all x' ¢ X,
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Lemma [, Let X be a compietely ordered set whose guotient
A fFcountable, There exists on X a real, order-preserving
function, continuousd in any natural topology.

Rank the elements of A; it is clearly possible to construct
by induetica on the rank an order-preserving function ¥ taking
A into some finite real interval, Let A= IandI(a), H= Su%tb(a).
ae ae

I o' satisfies A<a'< g and @' ¢ ¥ {A), four cases may occurs
the set {a e ¥(A)[e <e'} (1) may, or (2} may not, have a.
largest element; and the set {a € (A)|a'< a} (1'} may, Or A2M)
may not, have a smallest element, We wish to eliminatefthe
gaps of type (1-2'), (2-1*) and {2-2'); this can easilybe done
by means of a non-decreasing step function @(a ), ke height of
each step being equal to the length of the correspanding gap.
The new function ¢ %(a) = ¥(a) - @(¥(a)] is stillorder-preserving
and ¢ *(A) has no gaps of the unwanted typgs) Denote by alx)
the indifference class a to which x bel‘si{igs; we finally define
¢{x) = ¢"a(x)]. To show that ¢ is coiftihuous in any natural
topology on X consider a number ¢\A<a'< pand the set
Kot = {XE X| ¢(x} é a'}' ‘»y‘\?\!:»;’.'dbraulibr‘al'y_or‘g_in

1) If a'c ¢(X), let x' ¢ X Hesuch that @' = ¢(x'),
Xg' = {xe X[x S x'} and ig therefore closed.

2) If @'¢ ¢(X) and if(fhe set Rg' = {a ¢ ¢(X)a<a'} hasa
largest element a', X4~ Xg +* which is closed by 1),

) Uary 2(X) ahd'if the set Ry has no largest element,
then the set R®' £ Yo ¢ ¢(X)|a’< @} has no smallest element
since ¢ (X} has'nb gap of type (2-1'). Thus Xy = M, %a

AN aeRE'
and Xy i8\Elosed as an intersection of closed sets.
Simytarly one proves that for any number o' the set
<\xe Xla' € o(x)} is closed. It follows that the inverse
i.‘?ﬁ’&é’ by ¢ of any cloged set of the real line R is a closed set
of } X,

Lemma 11, Let X be a completely ordered set, Z = (zg, 21,7~ )
a countable subset of X, If for every pair X,y of elements of X
such that x<y, there is an element zj of Z such that x$2Zi2¥
then there exists on X a real, order-preserving function, con-
tinuous in any natural topology.

The assumption made is a weakening of the postulate
{(x <z <y) used by G. Cantor in [3].
Take first the quotient sets X/~ = A and 2/~ =C. Cis
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clearly countable and plays for A the role that Z played for X,
If A has a smallest and/or a largest element, we can assume,
without any loss of generality, that they are contained in C,

Define a new equivalence relation2 among elements of A by:
aFb if and only if between a and b there is a finite number of
elements of A. The binary relation F is indeed refiesive, sym-
metric and transitive, Equivalence classes for F are denated
by [a]Fa [b}F, Lt ™\

Every equivalence class is clearly countable. Moreovehan
equivalence class [c]g containing more than one elemghiddf A
contains an element of C and thus the equivalence clghsses {c]F
form a countable set. Summing up, C' the union oger those
classes [c]F, is countable and o0 is D = CUC’ s\ |

Construct now on D the function ¢*as in ,Llig‘j)r@mf of
Lemma I, ¢*is extended from D to A as'follows. Let ac A
and a¢ D; the set D, = {de D|d<a} has nblargest element.
To see this consider any d'e Dy, Since/@¢ D, a¢ C' and there
is an infinity of elements of A betweenid' and a, there is
therefore an infinity of elements of €] i.e. of D, between d’
and a, Similarly the s %Da = jﬂd‘e Dla< d} has no smallest
element. Asa con”‘é\é’&’u%nléaéﬂt%é \l;glﬁlel‘g'msu ¢ *d) and

OB de Ba

dénéa ¢ *d) are not taken Oh. Moreover these two values are

eciual since 9 %D) has}o gap of the (2-2'} type; they define

¢ *(a). The functioh M *(a), and therefore the function

¢ (x) = ¢“[a(x)], @ye clearly order-preserving and, since
¢{X)_= ¢ (A), bas no gaps of types (1-2') or (2-1"), ¢ (x) is
contmuoug i@.any natural topology on X (the proof ig the same
as for Lemima I),

O

*

NS 3. TWO REPRESENTATION THEOREMS

\ B

&

7N

Before statin
logical)
whose ¢
there is
sets.

g Theorem I we recall two definitions, A (topo-
Space X is separable if it contains a countable subset
losure is X.” A (topological) space X is comnected if

no partition of X into two disjoint, non-empty, closed

Theorem I. Let X be a completely ordered, separable, and
connect?d(space. U for every x'e¢ X the sets x¢ X x £ x'{ and
{xXe X[x' £ X} are tlosed, there exists on X a continuous, real,
order—preserving function ?




REPRESENTATION OF PREFERENCE ORDERING 163

This theorem can easily be derived from the results of
g, Eilenberg 4], It will be proved here as an immediate con-
sequence of Lemma II. A much more direct proof could as-
surediy be given: the motivation for the two lemmas is
Theorera 11,

Call 7 the countable set dense in X and consider a pair
x",v' of elements of X such that x*<y'. The sets {xeX|x$ xt}
and {x.e Xyt < x} are disjoint, non-empty and closed, they can-
not exhaust X which is connected, therefore the open interval
Jx',¥'] is not empty, and it must contain an element zj€e Z. "Th
theorem is proved since the topology on X is a natural tapelogy.

The assumption of connectedness is however very streng,
We give a second theorem where it is removed at the cost of a
slightly stronger separability assumption, A

A topological space X is periectly separable if’there is a
countable class (S) of open sets such that every open set in X
is the union of sets of the class (8). \

We remark that a separable metric ger is perfectly sepa-
rable, that a subspace of a perfectly.separable space is per-
fectly separable.

\ar‘w:w_d'br‘aulibrar‘y_m'g_in

Theorem I, Let X be a completely ordered, perfectly sepa-
rable space, If for every XL X the sets {xe Xix & x'{ and
Tx¢ XX £ xJ are closed, there exists on X a continuous, real,
order-preserving function.

Choose an eleme{ifiﬁ each non-empty set 3; they form a
countable set Z'\

Consider then‘the pairs a',b' of elements of A guch that
a'< b and thewnterval Ja',b'{ is empty. The set of those pairs
is COuntahl'e.\“To see this, associate with each such pair a set
Syt as ‘ﬁillf’)ws: take two elements x',y' in the indifference
3135?-9‘5\a',b‘ respectively. The set {xe XIx(y‘} is open and
therefore there exists a set Syt in the class (8) such that
268, C {xe X|x<y'}. If a")b" is another pair with the same
properties, Sp is different from Sy for one has a’' <b' < a'<h"
in which case x"¢ Spr and x"¢ Sy or a"<b" € a'< b, in which
case x'e 8 and x'¢ Sy, The pairs a',b' are thus in one-to-
one correspondence with a subclass of the countable class {8).
Choose then an element x' in each class a' and an element v
in each class b'. All those x' and y' form a countable set VAN

Consider finally the countable sst Z = Z'U Z"; it has all the
properties required by Lemma TI, Let x,y be a pair of elements
of X such that x<y. If the open set Jx,yl is not empty, it con-
tains a non-empty set S and therefore an etement of Z™, If the
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set Jx,y[ is empty, x~x'€ Z' and y~y'e Z'. So that in any
case [x,y] contains an element of Z.

FOOTNOTES

1. Consider the lexicographic ordering of the plane: a poipt of
coordinates (a',b') is better than the point (a,b) if “a’ >a"'or
if “a’=a and b'>b”. Suppose that there exists a rezl order-
preserving function «{a,b). Take two fixed numbers by by

KON
and with a number a associate the two numbers o 1{::Q =4 (a,bhy)

and @gfa,bg), To two different numbers a,a’ corrgépond two
disjoint intervals [a(a), @ 9{a)] and [@(a’), @ 3(@]; Cne ob-
tains therefore a one-to-one correspondence hel‘ween the set of
real numbers (non-countable) and a set of non~degenerate dis-
joint intervals (counfable), '

2. For definitions relating to an equivai?)}ée relation see [1].

3, For definitions of a topology and, ©f’a continuous function see
[2, §17 and {2, §4] respectively. \Jb

www dbraulibrary.org.in ‘
4, The closedness assumptiagghave already been used in a

similar context by I, N, Her'stéin in an earlier unpublished ver-
sien of [5],
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CHAPTER XII

MULTIDIMENSIONAL UTILITIES

by
Melvin Hausner
RAND CORPORATION Q
O\
1. INTRODUCTION O

This paper generalizes the von Neumann and M?rgenstern
theory of utility by omitting the Archimedean postulate. The
work was done originally at The RAND Corperation in the sum-
mer of 1951 by N. Dalkey and R. M. Thrglkx,‘Refined methods
were introduced by J. G, Wendel and the duthor in order to
simplify the work and extend it to thijipfinite dimensional case.

Two distinct concepts enter yniq asioxmslation,of; yrility
theory: the set of prospects, which we shall call the mixture
Space and the ordering or utilify*on this set. For convenience
we shall treat the mixture space first {axioms M1 - M5) and
then introduce the orderifits axioms {01 - 03). The two sets of
axioms, taken togethqr',’,}haracterize a utility space. AS an in-
termediate step, wéshall consider a weak utility space, where
axioms Q1 - O3 zte weakened. The weakened axioms are still
strong enough, o’ permit identification of "indifferent" elements
and still preg’egrve the operations of mixture and order.

The mair result is that a mixture space may be embedded in
a vecto \épéce; a utility space may be embedded in an ordered
vectqr space, The last section characterizes ordered vector
spades.

PN

\‘:

3. ALGEBRAIC PRELIMINARIES

We now introduce the following notation, to be useful in what
follows, Let 8 be any subset of a vector space V over the real
humbers, We define:

c{8)

the convex closure of S
the set of elements X ¢ V which are of the form

X = Tx;8; where xj >0, ZXi= 1, Sj€ 8,
167

il
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P(S) = the cone generated by S
= the set of X e V which are of the form X - 2IxiS
where x; >0, 5;¢ 8,
H(S) = the hyperplane generated by S
= the set of X ¢ V which are of the form X - Zxi84
where Exj = 1, S € 8.
ViS) = the vector space generated hy 8
= the set of elements X of the form X = 2x;5; whepe
Si € 8.

The above sums are taken to be finite. We note that Q(S}é P(3),
H(8) € V(3.

L. The set P(8) is closed under addition and sbalar multi-
plication by positive reals. Such a set is called &'cone. In the
course of various embeddings to be carried gub, it happens that
it is frequently more natural to embed in a’¢vne rather than in
& vector space. A cone C may be chard@térized by the follow-
ing properties (see 33, P1 -~ P8 forhescomplete set of axioms):

I, Cis a commutative semigroup with cancellation under the
operation +, o\ ¢

2. C s closed underdbeatPIAWATRiCation by positive reals,
The usual associative and dis}‘ributive laws are satisfied.

It C is a cone, it is postible to embed C in a vector space V
80 that addition and scalar multiplication in C may be extended
to V and so that C géierates V. This embedding is unigue and
may be accomplishédby the familiar method of first embedding
C inagroup ¢ (Under +{cf, [3], p, 43, where a ring is embedded

In a field). Th&’group C' may be made into a vector space by
defining \V

7\
N\
X{A-B} = xA - xB; x >0
R 0(A-B) = 0 ’
'\,j;‘o -X(A-B) = xB - xA; x > 0, A, Be C.

\T{é‘i ??g)then verify that C' is a vector space V and C = P(C),

IL I 8 is a convex subset of V(C(S) = 8), then P(S) consists
of elements of the form xA where x>0 and A e S. We seek 2
copdition (given that 8 is convex) that thig representation is
unique. First, suppose the representation is not unigue, Then
;‘_IAI = XgAg where xy 3 X3 OF X] = X9 and A; # Ay. Inthe
111"st case, we may assume (by dividing by x; - 'xg) that x-%2=
1, The:l.'l 0= X1Aq - X2A96H(S). The second case Xy =Xg> 0 is
tmpossible, Conversely, Suppose 0 ¢ H{S). Then 0 = 2x;A;
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where 2% = 1. By transposing, if necessary, we obtain

TyijAj = ¥z;4; where y{ >0, z; >0 and Fy; # Zzj. This gives
two differeni representations of the element ZyjAj in the form
XA, Ac 8, since the X may be taken to be Zy; and Zzj., Thus,
a necessary and sufficient condition that any element in P(8) be
represented uniquely in the form xA is that 0 ¢ H(S).

III, We set down some definitions concerning orderings for
future reference, ’

A relation R on a set M is said to be complete if for every\
pair 4,B in M either ARB or BRA holds. A'relation $0n°M
is said to be a weak order if it is reflexive, transitive.apa“com-
plete. A relation £ on M is said to be a chain ordex 1#it is
antisymmetric, transitive, and complete, T < is a chain order
and we define A< B tomean A S B but A 7= Bethen < is easily
seen to be asymmetric, transitive and trichoto"x’n}ms (i.e. exactly
one of A< B, A=B, or B<A holds), Con¥ersely, if <is
asymmetric, transitive, and trichotomous\and A £ B is defined
to mean A < B or A = B, then £ gives\achain order. If either
of the symbols < or € has been intrédéced we will consider the
other to be defined as above, WeAESb »Abg-&-Fodenote the
transposes of < and £, i.e. B$A means A<B and B ZA
means A § B. N

SN g

&) MIXTURE SPACES
A mixture space\i\s a set M = {A,B, ...} which satisfies the
following axiomss

AS
Mi1. FOr\én’y A,B e M and for any real p, 0 Sp<1,the p
midture of A and B, denoted by ApB, is a uniquely
fined element of M.
M2\\ApB = B(1-p)A

(M3, = P - 1-p)(1-1) £ 1
WM. AD(BrC) = (A= B) (p4r-pTIC [(1-p)(t-1) # 1]
M4, ApAa=a
M5, I ApC = BpC for some p >0, then A=B.

Taking r = 0 and B = C in M3, we have with the help of M4
ApB Ap(BOB) = (AlB)pB,
By the cancellation law (M5) we obtain
M6, A1B = A,

It V is a vector space, we may define ApB = DA + (1-p)B. It
is then easily shown that V is a mixture space. We shall show
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that this is the most general mixture space: any mixture space
is isomorphic to a convex subset of a vector space,

The embedding of M will be accomplished by first embedding
M in a cone P and then, as indicated in 32, embedding P in a
vector space V., We shall be concerned only with the embedding
in & cone, For convenience, we set down the axioms for a cone
which were suggested in 32, A cone P is a set {A,B, ...} sat-
isfying the following axioms: ™\

P1l, There is an operation + in P guch that A+ B is*@
uniquely determined element of P, where A,B\E\P.
Scalar multiplication by positive real numbers<x is
defined so that XA is a uniquely defined element of P,

P2, A+B=B+A e

P3. A+ (BiO) = (A+B) + C \

P4, T A+B=A4+C then B=C

P5. %(A+B) = A + xB, x >0 IR
P6. (x+y)A = xA 4 yA AW
P7,. x(yA) = (xy)A

P8, 1"A=4A

Given the mixture: spdber WETHe GERMR the set P to be the
space of all ordered couples}l(x,A) where x>0, A e M, and we
formally write (x,A) = xA, “Thus xA = yB if and only if x =¥
and A = B, (Later, A #ill be identified with 1-A and this defi-
nition of equality simly places M in V in such a way that
0¢ H(M), An extrh&ous dimension is thus introduced.)

The set P beihg defined, we now define addition and scalar

multiplication 4 P,
D1, rjsl%)“: rs(A)
D2.\r§s\~4 8B = (r+s)A——B,
N r+s
And We how verify that P ig a cone,

o ;‘Pl. is trivial,

\ ' P2 rA = L
. +8B = (r4s)A T B {D2)

~ s
= {S+I‘)B}TS'-A (M2)
= 8B+ rA (D2).

P3. 1A+ (sB#C) = rA+(s+t)B-S—tC
S+

ressla— @20,



MULTIDIMENSIONAL UTILITIES 171
Similariy,

(rA¢sB) +tC = (r+sst) [{(As: )~ ¢

r+8+t
With the kelp of M3 it may be verified that

r

s T r+s
A r+5+t (BS_+tC) - {Ar_+s )r+s+t ¢
which proves P3.
P4, ¥ rA+53B = rA +tC, then N\
(r+s)ALB = (r+t) Ai O

e
Hence, s =t and by Mb, B =C. Thus sB=tC ppovmg P4,
P5, xz{rA+sB) x(r+s)(A—B)

\\
rs
B)
Xr+Xs p \;

{xr)A + (x=s)B \‘

{xr+xs) (A

H

I

X(ra) + X(Sﬁn)w (:Lbrauhbl ary.org.in

P6. {x4y)rA = (xr+yr)A {;I:“

‘ﬁs

{(xr+yr) (A A) (M4)

S XT+YT
Xrl&\ {yr)A
\@(\rﬁ ) + v{rA).
P1. X(Y(rA))";’ x(yrA} = (xyr)A = (xy)(rA)
P3, 1- (r\A), = (')A = rA,

p lﬁhbs acone, If Ae M, we define f(A)=1-A¢ P to
obtaln\ following lemma.

A

:"Lémma 3.1. There is a function { mapping M into a cone P
\m such a manner that

1} f is 1-1 into P.
2) f(ApB) = pf(A) + (1-p}f(B) for 0<p<L

Proof: Define f(A) = 1-A. Then 1) is a consequence of
definifion of equality in P and 2) is verified by the following
Computation:

.ir
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HApB) 1-ApB

(p+(1-p) ) ApB

pA + (1-p)B

p(1-A) + (1-p) (1 - B)

pf{A} + (1-p)(B).

As in 1, the cone P may be taken to be a cone in some

vector space V which is generaied by P, The statement of the
embedding theorem follows.,

ol

(LI

Q)
Theorem 3.2, Let M be a mixture space. Then there'exists
a vector space V over the real numbers and a functign<f map-

ping M into V such that >
1. f is one-one into V. ~‘ R
4. f(ApB) = pf(A) + (1-p)(B), 0 < p £ K¢
3. fM) = C(i(M)), i.e., {(M) is conyex.)
4, V= V{f(M)). O
5. 0 ¢ H{f(M)). D

Proof: Let V be generated bpfhe cone P of Lemma 1.
Then 1, and 2, aretwutbibmlllemerkinThe cases p = 0 and
p =1 are trivial by M8,) Tq.ﬁrove that f{M) is convex, observe
that if A', B' ¢ {(M), so that™a' = {(A), B' - f{B), then
PA' + (1-p)B' = {(ApB) ¢ S{M) by 2, Hence f(M) is convex.
Since f(M) generates/P, {because the elements 1+ A in the proof
of Lemma 1 generate P} and P generates V we have 4. AS
for 5., we need tolprove that if xf(A) = yi(B) for x,y >0 then
x =y and f(Aps £fB). In terms of the cone P of Lemma 1, we
have xA = yB'\so that x = y and A - B, proving the result.

We now prove that the embedding is unique, To do this we
first py\c@g"the following algebraic lemma.

JZemma 3.3. Let V and V' be vector spaces with elements
AW, .. and x',y',2., . respectively, Let C and C' be con-

(Vex subsets of V and V' respectively and let 0 ¢ H(C), 0 ¢ B(C"),

V=V(C), V! = V(C). Let g map C onto C' in such a way that

4. gis one-one from C onto C',

b. g2(pA+(1-p)B) = pg(A) + (1-p)g(B} for 0< p <1 and
ABe C.

Then g may be extended in one and only one way to all of V
such that

a'. g is one-one from V into V',
b'. g is linear.



MULTIDIMENSIONAL UTILITIES 173
(Thus, if ¥ = ©x345, Aj € C, then g(X) = £x;g(A;), and this ex-
1
tension of g is uniquely defined and satisfies a'. and b'.}
Proof; Obv1ously there is at most one extension. Let us
first extend g to P(C), by defining g(xA) = xg(A) where x>0
and Ae C. {Observe that since C is convex, and 0 ¢ H(C), XA

is the most general element of P{C). There is no question of
whether g is properly defined, since the representation xA is

unique, N\
First, g is one-one onte P(C')., g is one-cne since if 4
xg(ﬁ):y {B) with x,v >0, A,B e M, we have g{A), B)EC'\

and two representations of an element in P(C"), Hence X2y
and g{A) = g(B), and therefore A = B. That g is ont,p P(C") is
clear. "
Next, ¢ is additive on P{C). For we have \\
- LI R
g(xA+yB) = glx+y) [x+y x+yK]’
- P \
= (y)glae Ty B
- (x+y)[g(&a}wéﬁl}b ar(?ﬁbllé) in
= xg(Ad + yg(B)
= gigA) + g{yB).
Finally, g is hom@néous For,
g(x(yA)) = glxyA)
P\ = xyg(A)
\\ = xg(yA).
We n‘(m}e'ktend gtoV. Let R, §, T, U, . . . denote elements
of P(Ch) The most general element X of V is of the form
X =RV'S, Define g{x) = - g(S). g is properly defined,

(Ceif R-S=T- Uthen R+U 8+ T, g(R) + g(U) = g(8) +a(T)
{by“additivity of g on P(C)) and hence g(R) - g(8) = g(T) - g(U).
We now prove a' and b'.

1t is easily verified, from the additivity and homogeneity, that
8 is linear, To prove that it is one-one, assume g(X) = 0. Let-
ting X= R - S, we have g(R-S) = 0, g(R} = g(8). Hence, since g
was shown to be one-one on P(C'), R=Sand 8=0. Finally, g
clearly maps V onto V' and this proves the lemma.
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Theorem 3.4 (Unigueness}, Let M be a mixture space and
let V and V' be vector spaces. Suppose  maps M into v and
T maps M into V' as in Theorem 3,1, Then V and V' are
isomorphic under a mapping g which sends an element X =

Zxif(Aj) (A1 e M) into g{X) = Zx;f (4;).
Proof: By Lemma 3.3 applied to the function g = £'§~1,

The above discussion has not depended on the dimensioplof V.
If the (essentially unique} V of Theorem 1 is (n+1}-dimensional,
then we say that the mixiure space M is n-dimensiqm\il‘.“.\m this
case, M is simply an n-dimensional convex set, g >

77N
| %

4. UTILITY SPACES (N

A utility space is a mixture space MyWith an order relation
imposed on its structure. In accord\with 43, we assume that
M is a convex subset of a vector spacé V with V = V(M)},

0 ¢ H(M). The relation & is required to satisfy the following
axioms:

<

www.dbl‘aulgl?fg'a;‘“y,org,in

Ol. The relation £ is alehain order on M,

02. H A<B and 0 p< 1, then pA + (1-p)C < pB + (1-p)C.
Observe that the converse of 02 holds since < is a trichotomous,
asymmetric orde ng.

Before consiflering utility spaces, we shall consider weak

utility spaces.\"i’!’hese are mixture spaces with an ardering S
satisfying (%)

Wl,\;‘ﬁﬁe relation § is a weak order on M.
W2, A< B then ApC< BpC for 0< p< 1,
WS, I ApC < BpC for some p such that 0 < p<1, then
SN AS B,
\/ Definition4.1. A~B if and only if AXB and B<A.

It is easily verified that this is an equivalence relation. Let

[A] be the equivalence class containing A, i.e.,, X e [A] if and
only if X ~A,

Definition 4.2. [A]< [B] if and only if & <B.

. It is _then seen that the relation < on the equivalence classes
1S a chain order. Let M' be the set of equivalence classes, We
make M' into a mixture space by defining

{alp[B] = [apB].
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With the help of W2, it is easily verified that this definition is
unique. That M' is a mixture space follows from the fact that
M is one.

To prove Q2, assume 0< p «I and [A] <[B]. Since ALB
we have pA + (1-p)C< pB + (1-p)C. We need only prove that
pB + {1-p}C £ pA + (1-p)C. But assume that

pB + (1-p)C $pA + (1-p)C.

By W3, we would have B <A, hence A ~B, [A] = [B] which N
contradicts (Al <IB). Hence 02 is verified.

We see that W2 was needed to define mixtures, W3 tof dehne
order, \.

Given a weak utility space M, we identify elements Wby the
above process to obtain a utility space M'. Any ulformatlon obh-
tained on M' will then be reflected in M. For t«h?s reason we
cornsider only utility spaces,

An erdered vector space V is one Wtht&ﬁtleles the follow-
ing axioms: R

V1. There is a chain order 2 on /WY
V3, If A>B then A + C > Bea@ dlonufifB:€y eri.in
V3, I A>B and x>0 then XA >xB.

An ordered vector space i&'thus a utility space, Axioms Ol
and 02 are easily seen to” “hold. The purpose of this section is
to embed a utility space«u‘an ordered vector space. Since the
utility space M is sedded in the vector space V as a mixture
space, it suffices %o extend the order relationship from M to V.
We assume that, 42 V(M) and 0 ¢ H(M). The order relation will
first be extendddto P = P(M) and then to V = V(P).

To exteug;}ﬁe order on M io P = P(M), we define

N\~ XA >yB if and only if x >y

&
or o\

S

e x=y and A >B for x,y >0; A, Be M.
Welnow verify V1, V2 and V3.

V1 is trivially verifiable.
V2. Assume xA >yB. We must prove that xA + zC >yB + zC.

But xA 4+ zC = (x+z)AmC and yB + zC = (y+2) ByTEC’ I x>y,
we have the result, since x+ z >y + 2. If x=y, then X+2z=y+2
. X ¥
= -2 C by 02. Hence
and since A >B, we have Ax+zC >By+z ¥
XA + zC > yA + 2C in any case.
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V3, Let xA>vB. Then the condition rxA > ryB is cquivalent
to the condition xA > yB. This proves V3,
Finzlly, the order on P will be extended to V by defining

A-B>C-D ifandonlyif A+ D>B +C for ABC,De P,

It is easily seen that the definition is unique and we omit this
proof, We now verify the axioms V1, V2 and V3.

V1 is trivially true. O
V2. Let A-B>C - D, We must prove that O\
RS

(A-B) + (E-F) > (C-D) + (E-F) for A,B,...E%P

But we have A+ D >B + C, Hence A+ D+ E+F3B+C+E+F
By definition, we have {A+E) - (B+F) > (C+E) #{P+F). Hence, by
rearranging, we have the result, "‘\

V3, I A-B>C-D and x>0, we have '

A\
A+D>B+ )

XA + xD >XBRXC ,
XA - XB >X0° xD,
www.dﬁ%uj@fﬁ“?&ﬁ%'

Thus, the utility space Muls embedded in an ordered vector
space V., As we have mentioned before, an extraneous dimension
has been introduced sjfice 0 ¢ H(M). The dimension of M has
been defined as the dimension of H(M). Once the above embed-
ding has been cafried out it is an easy matter to embed M ina
vector space of\its own dimension, To do this we simply embed
H(M) DM ing@vector space by selecting any point A ¢ H(M) and
defining f(®)2 X - A for X ¢ H(M). The image of H(M) is then
a Vectqr\';S}ace whose dimension is H{M). Moreover, [ is one-
one agd’f preserves convex combinations and order. This
seemingly roundabout method of introducing an extra dimension

J&reatly simplifies the embedding procedure since all of our em-

~\beddings seem to be accomplished easily by first extending defi-
nitions to P(M) where 0 ¢ H(M), Lastly, it should be pointed out
that the "proper" embedding should be thought of as an embed-
ding in an affine space, since the relations of p-mixtures and
order are preserved under the affine group. We use a vector
space for convenience in manipulation.
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5, ORDERED VECTOR SPACES

We now proceed to characterize ordered vector spaces., The
definition has been given in $#4 by axioms V1, V2 and V3. It is
convenient to introduce equivalent substitutes for V2 and V3 as
follows:

V2 I A>0, B>0 then A+ B>0
V3 If A>0, x >0 then xA >0, N\

We have O\
A>B ifand only if A - B> 0. o\
Thus the order is determined by the positive elemeqt@gﬁhich we
denote by V*, V2' and V3' imply that V* is a conig) Since the
order is 2 total order and is irreflexive, V* isa}rﬁaximal cone

not containing 0,

We now introduce a definition which reflects the failure of the
Archimedean property. Let A, Be V* {A{B>>0). Then we say
that A dominates B if A >xB for all\Mrédl x >0. We write this
as A>> B or B< < A. This is defihed only for positive ele-
ments of V, The relation << ig.frrdblexive-and frgngitive; and
A<< B implies A <B. Given Avand B, if neither A <<B nor
B< <A we write A ~B: A.i%equivalent to B. This is the same
as saying A~ B if and onln if xA < B < yA for some positive
reals X and y. Again fhis'is defined for A,Be v+, The relation
~ is seen to be an egdivalence relation. We denote by [A] the
equivalence class c?:)%taining A. We may then define [A]>[B]to
mean A< < B, Me-hen have a total order on the equivalence
classes, since/tiis definition may be seen to depend only on the
equivalence Classes and not on their representatives. The
Seemingl:{iri:elevant reversal of order is for later convenience,

N
Lewitha 5.1, If A>>B and C >0 then A +C>> B,
~OProof: If x>0, then A >xB. Hence A + C>xB.

Lemma 5.2, ¥ A> > ApAg, .- ,Ay and X1, ..., Xp >0,
then A>5>x A1 +... +Xphp.

Proof: If x>0 we have
A T nx XjA4
Summing and dividing by n, we have
A> XA +- . XpAn)»

proving the lemma.
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Lemma 5.3. If A>> Ay, ...,Apgand x,x1,...,%x, >0, then
XA 4 XAy 00+ XA > D R (AL g+ XA
Proof: By Lemmas 5.1 and 5.2.

Corollary 5.4, I {A;} is a set of elements of V+ no two of
which are equivalent, then the A; are linearly independent.

Proof: If there is a linear relation among the Ay, them we

will obtain a relation of the form .
2

XA+X1A1 + e+ XkAk = Xk+lAk+l +oae s XIXA\IEF
where the x's are positive, the A's belong to the ~g}§vén set, and
A>>Ay, ..., Ay Baut this contradicts Lemmab.3. _

As usual, we define |A| =+ A according a8, A is non-negative

or negative, The usual laws apply: ’

|A + Bl £ |a]aMB]
IxAl = JE)IA L.
With this notation we may state,thé“fcllowing important lemmas

.dbraulibrary .org.in
Lemma 5.5. Let A ~ ﬁ.gl?kTh%nt ere is a unique real num-

ber x such that XA = B orjxA - B| <<A.,

Proof: The unicQéness of x is immediate, for if x| # %2
we have

l(xl\\xz)AI S |xgA -yl + |X9A - VI,

and if the terfiis"on the right were zero or dominated by A we
should havd A << A,
To p;:Qxé that such an x exists, we assume that B >0 with
no lossid generality. Since A~ B, we have yA< B<zA
for, same positive real numbers y and z. Let x be the su-
premum of the numbers y for which yA < B. Let £ >0 be an
\"*grbitrary positive real number. Then we have

(x-£)A <B <{x+£)A,
-EA<B-xA< A,
IB - xA| < £A.

Then either B - xA =0 or |B - xA| < <A by definition.
We may now easily characterize finite dimensional ordered
vector space. The result is known (see p. 240, [1]) but we give

ii_: here as an illustration of the method used for the general {in~
finite-dimensional) case,
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Theorem 5.8. Let V be a finite dimensional ordered vector
space. & basis Aq,Ag, ..., Ap may be chosen s0 that the
ordering in v 1is lexicographic, i.e., so that

Il
A= D XA >0
i1

if and only if the first non-vanishing xj is positive.

Proof: Let V* be decomposed into equivalence classes agl >
above, For each equivalence class t, let At be an arbitraxy
element of it. By Corollary 5.4, the set {A¢ } is finite. . Wel
choose the notation so that Aq, ..., Ag are the representatives
and 41> Ag>> .. . »>Ak. Moreover, k € n = dimension of V.

Let Ac¢ V. If A0 then |A| belongs to somg equivalence
class, say Al ~ Ay, BY Lemma 5.5, either M= x4y, O

lA - xlAtll < L Atl' We repeat the procgs\g’on A - XlAtl if it

is not zero and continue until the zero e‘ie‘ment is reached. (It
must he reached in < k steps.) ThuSM is a linear combination
of the Ay's; and since A was arhitriiby-itlfoHeysthat the A's
constitute a basis for V. Thus &%= n.

Now let N
“A" E'E KiAi .

By Lemma 5.3, A >0 f\and only if the first non-vanishing co-
efficient x; is positi¢e:” This completes the proof. Observe that
abasis Ay, ... AL 15a lexicographic basis if and only if

Aj >0 and A1>\~:i>~; ce DD Ap.

Theorexd/5.7. Let Aq, ..., Ap and Af, ..., Ay be basis
elemenfsin the sense of Theorem 5. Then A} = TA; where T
is a Tower triangular matrix with positive diagonal elements.
Conversely, if T is such a matrix and Aj, ..., An constitute
,aJeXicographic basis then s0 do TAf, - - +» LAn-

Proof: We have Ay>> ... >>Ap and Ay >> L. > 248
Hence A; ~Al. Thus A} = X;A; + terms dominated by Aj ‘qy
Lemma 5.5, Al = X34y + XiptAgl t e where xj > 0. This
proves the first part of the theorem. For the second part, we
observe that TA; ~ A;. Hence TA{>> .. - >> TA, proving
the second part.

In terms of coordinates, we may state Theorem 5.6 as follows:
With respect to some basis, the vector X= (X1, o e xp) > 0 if
and only if x4 >0 or xy =0, x2>0, ..., OF X1 = -~ Xp-1 =0
Xp > 0.
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In order to consider the infinite dimensional case, we define
2 lexicographic ordered vector space as follows: Let T be a
totally ordered set. Let Vo be the set of all real valued func-
tions on T which vanish except on some well ordered subset of
T. We define f >0 if £ # 0 and if f{t;) >0 where t, is the first
t for which f{t) # 0. It is easily verified that V is an crdered
vector space. For ‘T finite, we get the finite~-dimension ordered
vector spaces. It may then be shown that the ordered set T s
order-isomorphic to the ordered set of equivalence ¢ ldsseq in
Vp. If V is any ordered vector space, we let T be the‘qet of
equivalence classes with the previous definition of or,be Then
the result is that V is embeddable in a SUpra(‘E'OR Vo which
contains the characteristic functions of points,? The proof is by
transfinite induction, The details appear in f‘?}

I~
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CHAPTER XIII

APPLICATIONS OF
MULTIDIMENSIONAL UTILITY THEORY™

by
Robert M. Thrall N\
UNIVERSITY OF MICHIGAN O\

'\

In the preceding chapter a set of axioms was givegffrﬁ- a
(non-Archimedean} utility space. This chapter is & €&ntinuation
and amplification of the preceding one. In the first part the axi-
oms are studied with special attention to the cehsequences of
weakening certain of them. In the second paﬁ'several applica-
tions of non- Archimedean utilities are presented,

WW \;\{’,d.b"r‘aul ibrary.org.in

1. DISCUSSION OF THE MIXTURE SPACE AXIOMS

We recall that a mixture space is a set M = {A, B, ...} of
elements called prospects,‘\‘which satisfies the following axioms:

Ml, For any A, B&M arnd for any real p, 0 <pgi, the p-
mixture of ¥4 and B, denoted by ApB, is a uniquely
defined ejemeént of M.

M2. ApB = B(f<pia

M3, )= -

AIJ(:E:{Q\) (A s BYer pr)C

M4, A v’ A

M5If ApC = BpC for some p >0, then A =B.

”Th?\‘élosure axiom M1 is clearly essential for any mathe-

niatical development, In interpreting this axiom in the real
world we conceive of ApPE as being the prospect of being given

*Most of the results described in this paper were obtained under
Contract Nonr: 374 (00) with the Office of Naval Research, but
Some of them (especially in section 3) spring from work done at
RAND in the summer of 1951, The author wishes to acknowledge
the contribution made by Dr. Norman Dalkey of RAND Corpora-
tion during a series of informal discussions on the general sub-
Ject of utility theory.
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exactly one of the propects A and B, with the probability p of
getting A. Thus, automobile 1/100 candy bar could be realized
by a ticket in a 100-ticket lottery in which there was to be one
automohile prize and 99 candy bar prizes, This Iottery iuter-
pretation fails if p is an irrational number. For example, if

p =1/r then ApB cannot be interpreted as a lottery prize.
Again, although one can construct lotleries for such prospects
as A .55555 B and A .55556 B, it is questionable whether.afi\
individual could distinguish between them in any natural sethng.
Clearly, in any real-world case there is a limit to disgr"mqfination
just as there are natural limits to the accuracy of maa\surement
of length, Limitation of discriminatory capacity ganrot be any
maore serious as an objection to the use of real Hunbers p in
this theory than it would be in the theory of physical measure-
ments, However, in applications of this thegry one must take
care to avoeid using conclusions which daQeﬁd essentially on
exact discrimination,

I in any interpretation axiom MI\is accepted then axioms
M2 and M4 are relatively uncontroversial, Axiom M3 isa
kind of associative Jawdwhidibwid} eegtainly be valid in any ap-
plication if the judge proceeds according to actuarial principles.
However, its truth in a psyghological sense is far from evident.
It would seem desirablg{Mherefore, to test it experimentally to
see at least how the errors involved in using it in a real world
situation compare@th errors that come from discriminatory
limitations, \

A recent experiment, reported in [2], seems to indicate that
evaluation of\@"prospect ApB depends not only on the value of P
but also oi’the manner of presentation, For example, consider
two pugth'boards each with one winning place, the first having
th .!}o}es and the second having twenty holes, The probabilities
of\Winning with one punch on the first board and of winning with

< .«Egn punches on the second are both one-half, but these two pre-
Sentations of p = 1/2 are not considered equivalent by all sub-
Jects, This experiment indicates a definite limitation to the
range of applicability of axiom M.

Axiom M5 is a cancellation law and is included for logical
clarity, The point at issue here is not whether the judge is in-
dlﬁe.re‘_“ between ApC and BpC, but is rather what ane means
by Qg,_tl_nc_t prospects. Its role is logical rather than psychologi"
cal and its acceptance entails no psychological assumptions.
Axiom M5 serves to "glue" the space together. Without M5
we could have the following possibility. Let M consist of three
prospects A, B, C where A = pencil, B = apple, C = nothing.
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Now s=t ApB = BpC = ApC = BpC =C for all p with 0<p <1,
and define X1¥ =Y0X =X for all X,Y in M. This system satis-
fies M1, M2, M3, M4, but not M5, and might even arise in prac-
tice for an individual who would evaluate as worthless all mix-
tures involving two distinet prospects. However, we can hardly
expect 2 mathematical utility theory to explain such behavior,

In summary, so far as applications to the real world are con-
cerned, the crucial mixture axioms are M1 and M3; in both of
these the psychological content is open to question and, therefore,
also to experimental study. It will possibly turn out that these N\
axioms are better fitted for analysis of command level group
judgments than for that of individual judgments. AN

7%
S

2. THE ORDER AXIOMS  ./))

o\

W1. The relation $is a weak order on M, (Cf. Chapter XIL)

WZ. If AS B then ApB S BpC for 0&pX 1.

W3, If ApC & BpC for some p suchihat 0 <p <1, then
A<B. 8

\arww_'d:br:aulibrar‘y_m'g_in

I we have both A < B and B S we write A ~ B and say
that A is indifferent to B. Indifférence is an equivalence rela-
tionon M. Ny

In many ways W1 is the. order axiom most open to question,
A mixture space has an jafinite number of elements and the judge
is asked to make jud J,Qeﬁts oi preference or indifference between
each pair of these el&nents, and these judgments are to be tran-
sitive, A prospect :A is said to be pure if it is not the mixture
BpC, C < p < 1xnBFany two other prospects B and C. If the mix-
ture space ig‘generated by a finite set of pure prospects one has
more hope{Cyricerning the possibility of imposing an order rela-
tion. [A\pét S of prospects is said to generate the entire space
M if {on, each prospect C in M there exist probabilities
DL, &%, pp and elements Ay, ..., Ap in 8 such that C =
8191 (Agpg (.. . (A _1PAL) - * " )]

From the practical point of view, if the number of judgments
needed is finite but large, there is still the time difficulty. By
the time the judge has reached the 1,000,000th choice, bis stand-
ards of comparison are almost certainly not the same as initially
The theory calls for instantaneous and simultanecus judgments
between all pairs, and applications should be limited to cases
where there is some evidence that the judgments used have been
based on reasonably constant standards.
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In a way, axioms W2 and W3 help simplify the judgment
problem; in principle, they show how to reduce greafly the num-
ber of judgments required. For instance, if M is generated by
a finite number of pure prospects cne can get by with a finite
number of judgments. However, in spite of their obvious im-
portance, there are some ocbjections to these axioms,

For example, consider the prospects A = win five dollars,

C = lose five dollars, B = neither win nor lose. This 1s a one
dimensional case, and so utility theory requires a p for which
B ~ ApC. (This p need not be 1/2.) Consider an indivigual 'who
has a negative utility for gambling and who accordingl;{ H€d, say,
B~A.6C, I W2 and W3 hold, then we must have '~
D= ApB ~E = Ap(A .6 C) 7
whereas the individual might prefer D to E~l‘=§i\nce D involves
no chance of losing and still has some chaneé cf winning. This
type of behavicr would follow from a lgckx\of symmaetry between
"good"” and “bad" prospects. Such adack of symmetry has been
apparent in some experiments run;bif'Ward Edwards, reported
in [1], www. dbraulibragg org.in

On the other hand attempts o' weaken W2 and W3 lead to
curious theoretical results,}"Wé discuss one of these.

Let M be a mixture spaee with a weak order &, and with the
only connection betweeh,Order and mixture being the reguirement
(@) A<B, and 0LPK 1 imply A< ApB < B. This axiom has
the effect of giving,a definite order sense to each line in which
there exist at 1east two elements A and B with A< B. How-
ever, this axigm is fulfilled in the following example, Let M
l?e t‘wo-sPa{;e and let < be defined by A = {ay, ag) <B = (by, ba}
i (12 ag<W2 or, if (i) ay =by and ay £ by if ap is rational, OF
_31 ?__;%"ﬁ ay 18 irrational. Then any line of ncon-zero slope has
its increasing direction upwards, but for horizontal lines the in-

. (cteasing direction is left-right or right-left, according as the
"\ Wistance of the line from the x-axis is rational or irrational. |

particular, it can happen that A< B but ApC > BpC. This might
well be deseribed as an “irrational” utility !

3. NON-ARCHIMEDEAN UTILITY

The addition of the following (Archimedean) axiom:
W4 I A<B <C there exists p such that B ~ ApC

limi ili
1mits utility spaces to one dimension, i.e., to the real numbers:
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Although dealing with the real numbers is convenient, there are
some Situations in which axiom W4 does not seem to hold but
for which higher dimensional utilities are satisfactory.

Tor example, if A = "be hanged at sundown,” B = ""be given
1 common pin," C = "be given 2 common pins,” it is clear that
A< B<C (assuming that pins are of some use), B is not un-
reasonable to suppoese that there are some individuals for whom
W4 fails to hold in this case. However, a two dimensional utility
will fit this case if we let the dominant component describe the
probability of being hanged and the subordinate component refer\
to the relative probability of one pin versus two pins. In more
detail, we zssign to A, B, C, respectively, the coordinates{(00),
(1,0), (1,1). Then the utility space can be considered as, the tri-
angle with vertices A, B, C, f D and E are two progpacts, we
have D< E if E is closer to the side BC, or if the/@ireCted line
segment DE is parallel to and has the same sense:a’s BC; ie,
if D={ab) and E = (c,d) we have D<E if ae"orif a=c¢
and b <d. AN

Another example arises in appraising ¥arious alternatives in
a military situation, The commanding Zeneral must give top
priority to not losing the war; subjeet sbthisiprioyity hintries
to conserve manpower; and, finally;jother things being equal he
attempts to conserve supplies. (This could be described by a
three dimensional utility.,  ~8°

For a further example,consider a social group in which a
certain action A is tabqo,,\a second action B is neither good nor
bad, and a third actidn " is moderately good. Thus A <B <c,
but it is extremely unlikely that W4 holds.

On the other h@ind, if one is dealing with a purely economic
situation in whiCh axioms M1 - M5 and W1 - W3 hold, it is
quite likely, t.th W4 will hold also, Hence, for much of eco=
nomics ox\ke'\c}:m probably safely neglect non-Archimedean
utilitieg,’

O '

4. CALCULATIONS WITH NON-ARCHIMEDEAN UTILITIES

£

Suppose that a commanding general is using a two dimensional
wility to evaluate a military situation. ¥ he has n basic strate-
gies Py, ..., P, and his enemy has m pasic strategies
Qp + .+, Qs he must first evaluate the outcome if he chooses
P; and the enemy chooses Q. This evaluation will be an or=
dered pair of numbers (i}, E])i]-) where, say, the first component
is the dominant one, H we assume that the general is using game
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theory, his action will be to choose some mixed strategy. If he
chooses the mixed strategy which assigns probability p; to Py,
i.e., if he chooses a probability vector 7 = {py,. .., Py,) then
his expected outcome will be at least as good as the veetor
(7} = min Zp;t(a;q,bl}) Hence, his task is {o choose a proba-

bility vector # so as to maximize f(r), Since his order relation
is lexicographic, he first finds those vectors 7 for which the
first component fy(n) = mjin ZPyaxj of f(x) is a maximum,(Ac-

cording to the general theory of games these vectors furwa
non-empty convex subset S of the set of all probabilith “ectors.
If 8 is a one element set his problem is solved, but i 5 is
larger than one element he now must search fo:,: &éptors 7 in S
which maximize the second component fg{m} <ein Eppbyy of £a).

Again the theory of games guarantees a qolutmn. If instead of
two dimensions the general had three or\\more dimensions, he
would merely iterate this process. &

This discussion illustrates thesfact that non- Archimedean
utilities.are perfectly satisfactoryfor game theory. The equiva-
lence of game thegryateraatibatrprogrimming guarantees that
non-Archimedean utilities .}q‘i.iil be satisfactory also for linear
programming problems. 3%

2
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INTRODUCTION ~

7

The statement of Laplace [9] that the theory.of probabilities
is at bottem merely common sense reduced Ko:calculusl and the
saying of Schumpeter [18] that, to a lay n,reconomics must
appear halb unverstaendlich, halb selbstverstaendlich, have
similar meanings, Both men saig, Jngilegh, i thelf, rspec-
tive disciptines formalized certain‘eoncepts andypr ogitions of
pre-scientific practice. Surely.this did not lead them to think
that their disciplines were uséless. In fact, both disciplines
have been fairly successfuly,

The present paper is.conceived in the same spirit; and it
happens to touch on oQﬁ»économic theory and probabilities. It
can be interpretedas extending the economic theory of a ration-
al firm into the domain of uncertainty, giving special regard to
the character ghgfirm as a team. All criticisms leveled
against econoghfc theory can therefore be also raised against

the type pgw.;brk represented by this paper. In particular, in

*Resedrch undertaken by the Cowles Commission for Research
in‘}éz‘lz’l'ltitl'nics under contract Nonr - 358(01), NR 047-006 with
the Office of Naval Research, The bulk of the paper Wwas writfen
in December 1952, Its revision in August 1953 was part of the
author's work at the Institute for Numerical Analysis under a
contract between the National Bureau of Standards and the Uni-
versity of California, supported in part by the Air Research and
Development Command, USAF.

Acknowledgments are due to Gerard Debreu, Roy Radner,

and Leo Tornquist, of the Cowles Commission staff. The author
Owes much to earlier discussions with Alan Newell, Joseph

Kruskal, and €, B, Tompkins.
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concentrating on the typically "economic™ question of the most
efficient rules of action and communication for group members,
I have pursued a line different from thosc who are interested in
the description of existing modes of behavior within human
groups, Yet, I do feel the two lines of research will meet some
time, and that communication between the two types of workers
is fruitful, When time comes for second approximatlons of the
economic, normative approach, limitaticns on human rationa{ity
emphasized by descriptive workers will have to be properly
formalized and introduced into the theory as a factual gonstraint.
On the other hand, the criterion of efficiency of a tagtadof of 2
foundation should be helpful in describing those h,u,r’ps:'n groups
which have been created for a purpose: just as ~t}1is' zame cri=
terion of efficiency is a major guide in describing human arti-
facts such as machines or ships. The history/of ships is no
doubt fascinating and full of suggestions . But to buy or build a
ship, it is also useful to know what makés a ship safe and fast.
There is a history of political constifitions. There is also the
question, What makes a constitution suitable for its task?
There are many histpmiaaftbyginagsicorporations, There is
also the question, Which struetures and procedures make a
business organization profitable ?

N
1. TEAMS, FOUNDATIONS, COALITIONS
S

1.1, Prefereénde orderings, Human groups can be classified
according to\whether a group goal exists and according to the
relation bgtween the group goal and the goals of group members.
A mord formal and convenient phrase for "goal" is "preferencé
ordering of states of the world;" or simply "ordering,” or "ib-
terests.”™ The relation s G; 8' will be read: “irom the point of
Jlew of i, the state s is at least as good as the state s'." The
binary relations Gj, i=1, 2,- + +,n will denote the orderings by
individuals (individual interests), and G, the ordering from the
point of view of the group (group interest). Groups will be
classified according to which combinations of the following
propositions are valid (& will denote the set of all states):

A, For every i (i=1,. + +,n), there exists a complete order-
Ing Gi on S. [that is, every group member has a prefer-
ence ordering]:2 Rationality of members.

B. There exists a transitive ordering Gg on 5. |That is,
the states can'be ordered Tor the group, at least partially:
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see footnote to A): Transitivity of group interests.

C. For any s, s' in S, if sGjs' forall i=l,---,n then
S Gg . |Thafs, if s is not worse than s' for any mem-
ber of the group, it is not worse than g' for the group it-
self]: The so-called Pareto optimality principle.

D. Forany s, s’ in§S, s Go 8" or g G s. |Ihat is, for no
pair of states is it impossible to say which is preferable
for the group, unless the two are equally desirable]: Com-
pleteness of group preferences. (Note that B and D imply
togeiner complete ordering.)

E. For all i=1,«++,n, s Gj s' if and only if s Gy S’ {That
ig, all individuals have identical interests among t}iern-
selves and with the group]: Solidarity. A\

is satisfied we call the n group members rgti:onal.

B and C are satisfied the group is a coalifion.
, B, C and D are satisfied we call it a foundation.
B, C, D and E are satisfied we call ity /team.

1.2. Utility functions. The same goneepts can be defined
(somewhat more narrowly”), if vhe¢visthvidibiocymplete ordering
Gj (i=1, - - «,n} is replaced by a fumerical function uj Of ¥,
the so-called satisfaction or gtility function. The group mem-
bers are called rational if for every i=1,- -, n there exists a
numerical function uj(s)¢Such that wi(s) 2 ui{s") if and only if
s Gy s'. The correspofiding group utility function up(s), if it
exists, may or may‘nbt he a numerical one. If ug(s) is numeri-
cal, then ug(s) = Gofs') if and only if s Go g'. Inthe case of
coalitions othérdhan foundations, uapls) is the vector [\11(5),' T
mctm(& are partially ordered). In the case of founda-
tions, ug{gN¥s numerical and is a monotone non-decreasing
functiqq%i“ul(s)’ ug(s), - + +, up(s) In the case of teams, uals) =
ul(s)"—'."; . -zun(s).

'\

{173, Incentives; Bargaining. To sum up: an indi
rational if his preferences are consistent, A group of such in-
dividuals is a coalition if, whenever a Ztate ig worsened for one
individual and is unchanged for all others, it is considered as
worsened for the group. A coalition is a foundation if all states
can be compared from the point of view of group interest. A
foundation is a team if group interest coincides with the interest
of each member.

A team may be regarded as the simplest form of a group. I
a group is a foundation but net a team, the group has a goal

vidual is
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separate from the individual goals. This gives rise to the prob-
lem of individual incentives that would best serve the group goal.
If a group is a coalition but not a foundation, there iz no "group
interest™ to help in making all choices: when any state is
reached where no member can be made better off without mak-
ing another member worse off, further choices are determined
by bargaining, and problems of "relative power™ arise. If a
group of rational men is not a coalition, there arises the gens
eral problem of a {generally non-constant-sum) game.

1.4, Some recent literature. In recent literature gh‘e paper
of Herbert Simon [28] on the Employment Relationship, dealt
with a coalition {in our sense) between an employer and a work-
er. The work of Bavelas [1] and his group deals"witn foundations:
a group goal exists (some task is to be achieyed in shortest time
with least error, etc.) but there need not bé tomplete solidarity;
some of Bavelas' mathematical proble $*(to find the minimal
number of messages needed to {ully’\équialize the state of in-
formation among n members) are {éam problems. In von Neu~
mann-Morgenstern)s, §heammefiGames[16], coalitions have the
same meaning as here; foundations do not seem to cceur; teams
occur, e.g., in the case of avpair of bridge partners. The pro-
cess of bargaining withim a coalition, and the process of forming
and dissclving coalitig® within a general game is not treated in

the Theory of Games.)A theory of bargaining has been presented
by J. Nash, |13 |,1 %;] It is possible that such problems require
postulates addifional to that of the existence of consistent indi-
vidual prefqr:énées. Such postulates were developed in models
such as RoyBush's [3] and N. Rashevsky's [15].

This Paper represents a part of the work on teams by the
authgnand other members of the Cowles Commission, espe-
cially'Beckmann [2] and Radner [12], [14], This work included

... 2180 some preliminary attempts to deal with the problem of

 fOundations: ([10], Part ITl; Faxen [6]), but such attempts will
not be made here.

2. ACTIVITIES: OBSERVATIONS, MESSAGES, ACTIONS

as ii;;u.f_;?sw. Each state s of the world which,
from the ot ;“ Il’ Is compared with other states of the world
- dependI; nt of view of the team's interests, can be regarded
content ng on two classes of variables: (1) variables that are
olled by the n members; we shall call them actions and
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denote thera 5y aj,- * *, an; (2) variables that are not con-
trolled by the members; we shall call them "state of environ-
ment" or "exiernal variables', and summarize them by the let-
ter x. Since the team's satisfaction depends on the state of the

world 5, and s depends on a1,* - *,an and on X, we can de-
note the team's satisfaction by
{2.1.1) u = u(a,x),

where a = {aj, - » -,an). (Because of "solidarity" of team meni=\
bers we have omitted the subscript under u). u is also called
payoif or gain. The environment x will be considered random,
with a known distribution function. O

2.2, Activities, To each individual i corresponds"an action
variable a;. Moreover, to each individual i cqr«fe%ponds a set
X; of the values of the variable {possibly a group’of variables)
that he can observe, and the value he has aq»u'ally observed can
be denoted by x;e X For example, X1 ¢*feconomic conditions,
Xg = political conditions, etc. Thus KeAxq, - - ., Xp). We can
distinguish three kinds of aCtiVi&;%%g%fb;jéuIibrary_m—g_in

1) To make an observation Xj\Oh the external world

2) To perform an action ai:'}lpon the external world

3) To send to a co-member j a message (report) mij, 1.,
2 statement about the external world, of the form

ne
U % e Xy € XK

that is, a report dtites that the observation x; made by the re-
parter belongshto/a subset Xij of X;. The report can thus be
identified agthe set Xjj. TWO extreme cases are: an "exact (or
most de"iﬂéd') report” when Xjj consists of a single element,
Xij = {x}> “no report” when Xjj =Xj. We can write Xjj =2&.
~ 2“\'3i Cost of message. Thus in general a message mij is a

ubset of X;j, A non-negative number Ci(mij) will measure the
€Gst of the message. We have

ei({xi}) » ¢ (&) = 0
while "inexact messages” (i.e., messages where Xj; consists of
more than one, but not of all elements of X } have Intermediate
cost. In special cases, c¢; may be regarded as a non-increasing
function of the measure of set Xij.
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2.4, Examples.

1) Let xj = vector (xi, x{'}, e.g., x} = leather price, x}' =
shoe price. Then a report to j, giving values of x| and x' {so
that Xj; = a point in the x|, x{' -plane), is more "exaci” and
more costly than one giving the value of x} only (so that Xjj =
a line in the xj, x{' -plane) or of x{' only.

2) Let x; = price and let the report Xij state a sub-
interval ¢ € x; € f; then the report is the more exact and™\
costly the smaller 8 - a. N

(NN
'\
2.5, Three-phase team. We shall consider three*phase
teams only: ,,f""'

Phase I : Observations made, \\
Phase IT: Messages sent and\ieteived.
Phase III: Actions perforn}‘%l.’

Actual teams may have, of courgey ' many more phases, Mes-
sages will oceur that do not fall ugtlét the definition of our Sec-
tion 2.2.: e.g., reports transmifting a third member’s message.
In the present pap‘éi",waf%ﬂ?‘qié%%‘éyfrﬁiénmember i has informa-
Hon xj . After Phase II hisVinformation is the logical product

{Xi'} h’xli e N X

o\

2.6. Best rul s‘\iWe shall be concerned with determining the
best rules of aclion and communication. A rule states, for a
member i, the\!response” he should make 1o & given "stimulus.”
In Phase Iithe stimulus consists of the observation xj, and the
response/gofisists in sending the n-tuple of messages,

() A\ €3 mypy) = my (a row vector)., The rule for Phase IIisa
functie R% such that

28 mj = Rj(x),

X

N

7.

involving a communication cost ci(m!), say. In Phase III, the
stimulus of i consists of the observaltion xj and of the n-fuple
of messages received by him, (my;,+ -+, myj) = my, a column
vector. The rels[ponse is the action aj, and the rule for Phase I
is a function RY such that

2.6, _
(2.6.2) aj = RIiI (x;, m,).

We shall write x, m', m, a,

I LII .
R’, R* for the corresponding n-
tuples (Xl yeoee, xn), P 5

(m'l »**+,m}) etc., and denote by ¢{m)}
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the cost incurred when the matrix of messages sent is [mij].
From now on, we shall call u(a,x) the gross gain of the team.
The net gain of the team is

(2.6.3) v = u(a,x) - c(m) = v{x; R, RIL u,e),

a quantiiy depending on X; on the rules that determine m as a
function nf x and a as a function of X and m; and on the func-
tions u and ¢ that measure the team satisfaction and the cost
of meszages, Q
We have assumed that in the opinion of the organization or
team a probability measure on the set X of the states X objen-
vironment exists and is known to them. This distril:gutjbn of x
will be denoted by F(x), The expected value of the'ngt gain is

(2.6.4) }{ v BL RIL uc) dP(x) = V(RL RE\e, F),

say. We want to find the rules Rl = ﬁl }, R - ﬁII that will
maximize V, Clearly they will depen ‘on the functions u,c and
F. We want to study this dependr-mr;e.:x at properties of the
funct_ions u,¢ and F make for %;gg’sépnl;_ggﬁblsg_s fg;? _uent and
detailed communication betwegm 2 given pair o me¥ibers ?
What conditions make it profitabie to cut off direct communica-
tion between i and j2 0%

2.8, Maximizing expeécted utility. In Section 1, a decision-
maker was calledirational if the states of the world at his choice
were Completelym:g‘ered (ranked) by his preferences. This or-
dering was repregented by a numerical utility function, In the
Present Sectinr, the preferences must be conceived in 2 manner
that allow&’for the uncertainty of outcome of a decision. The
decisi. wmaker is pictured as assuming a certain probability
distribition F{x) of the environment. Therefore the outcome of
F{&Igh'decision is a probability distribution of events, a "'pros-
~~Pegt”; though in a special case the distribution may degenerate
inte a sure event. The set & of 1.1 is to be reinterpreted as a
set of prospects. A rational decision-maker has a complete or-
dering of prospects, A numerical utility function can be atiached
to prospects so that u(s') 2 u(s'") whenever prospect s’ s pre-
ferred or equivalent to prospect s That is, the rational man
chooses that prospect s for which u(g) is a maximum.

However, the concept of raticnality which we shall use is
_stronger than the one just stated. The rational decision-maker
15 defined as being able to represent his preferences by a nu-
merical utility function possessing the following property.
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Denote by (sy,** *,8y5 P1, ., Pm) & prospect congisting of
the anticipation of prospects (possibly, sure events} s1,- * *, 8y
with respective probabilities py,+ « «, pyp - Then WSy, -« «, Spi
Py, o, Oln) ® ulsy, -, sm; P+ ¢, py) if and only i

m m
Tpj uls;} # Zpj ulsg).
1 1

In other words: if we regard u(sy),-«-,uls _} as alterndtive
values of a random variable u(s), the choice between twO\pros-
pects characterized by the probability vectors {pj} and Foy'}
respectively depends on the values of a single parameter of the
two considered distributions of u(s), viz, on its gXpectation
{mean}, Inthis sense, the rational man is deijiled as maxi-
mizing expected utility. This definition wasuged in 2.6 where
we ask for the rules of action and commu,qication that would
maximize the team's expected net gain./"”

This definition of rational decisiopthn:der uncertainty goes
back to Daniel Bernoulli and has béenrecently much discussed,
under the impact of geripinhehavior pastulates formulated in
the Theory of Games, Here we shall not discuss these, or
similar, postulates in detaili;"‘l' Instead, it will suffice to show,
in heuristic fashion, a wai'tc; assign to one's prospects a utility
scale possessing the fé@uired property; and to claim that a sys-
tem of preferences gepmitting such a scale does characterize
an ideally consist \t‘decision-maker, e.g. an ideal organizer
and legislator f6Ba team,

Assume provisionally that there exists for such a decision-
maker a Yworst" and a "best" state of the world. Denote them
to by i(i'a,nd 8y, respectively. Assign them utility numbers
u{sg)l=0"and u(sq) = 1, and proceed to ‘'calibrate” on this scale
th9 atilities of all other states. To begin with, consider a pros-

.. pect promising sy with probability 7 and s, with probability

¢ 1"~ 7. In the notation just proposed above, such a praspect will

be denoted by (Sl’ Sg; M, 1- 7). The decision-maker—you, the
reader, for example—will {a postulate is hidden herel) consider
such a prospect better than sy and worse than si. Therefore
you will assign to it a utility number between 0 and 1. The
probability is itself such a number. It is therefore permissible
to choose a utility function u such that u(sq, sg; 7, 1-7)} =7,
for any n between 0 and 1, including 0 and 1 themselves
since u(sy, s4; 0, 1) = ufsg) = 0 and ufsq, sy; 1,0) = 1].

Consider next some prospect s that is neither Sg nmor 51
nor the promise of s1 or s, with some probabilities, If the
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decision-maker is indifferent between s and sy, or, alternative-
ly, between s and sg, then, of course, u(s) =0 or 1, respec-
tively, There remains the case when he considers s better
than s, but worse than s;. In this case, by scanning all pos-
sible prospects of the type (51, Sq; 7, 1-7), with 7 ranging
continususly from 0 to 1, one will find (a postulate is hidden
here!) ecne such prospect that the decision-maker will be indif-
ferent between it and the prospect s. That is, there willbe a 7
such that u(s) = u(sy, so; 7, 1-7). And since, on the utility M
scale chosen above, u{sy, Sg; 7, 1 - 7) = 7, we shall have u{s)=T.
Thus we have assigned utility numbers to all prospects. & ™
To show that this utility seale possesses the required\prop-
erty, compute the utility of the prospect s = (t3, tg, ™%, tm;
D1, Pg,+ ¢, B, Where tq,. -+, tym are prospeci\;s:(possibly
sure events) and py,- - -, Py, their probabilitiesss Let the utility
of each t; be measured on our scale; that is,\Nitj)= #i if the de-
cision-maker is indifferent between t; and{ty; to; 7i, 1 - )
Then the decision-maker is indifferent l;é\tween the prospect
(1,0 v tms Dy, *,Ppy) and the praspect [{sl, 8¢5 715 1-m),
(51, So; 73, 1 - mg),+ + », (51, SowTmabradibbaPy ofg t Pmb
{actuaily a postulate is hidden here)s But the lafter prospect is
nothing but the promise of sq with probability p17y + pgag +: + -

A\ m
with probability 1 - ? pult;). Now,

~

ml
Pmfm = % piufty); and ofis"0

on our scale, the uti '65;'0} such a prospect is simply equal to
the probability of &y, Hence

" m
U tmi Py P = ] piulty);

{2
the expr%’iﬁn on the right is the "expected utility” of the pros-
pect (tld\ ., fmiPrss s pm). Hence, if two prospects
(t1, = A% tm; pY, » « +, Ply) and (ty, ¢ * s tms BYs* - ., D) are
compared, the preferred one will have the higher expected
atility,

The provisional assumption that there exist a best and a
WOTSt states can be dropped. We can assign utilities 1 and 0
to any two states, sy and s, of which the former is preferé'ed
to the latter; and assign, as before, utility numbers mlosnsl)
to all prospects which are not better than sy and not worse than
So- To assign a utility number to a prospect (say sg) thatis
hetter than sy, we first form a number 7 (0 <7 < 1) such that
the decision-maker is indifferent between sq and (sg,Sgi 71~ m);
and let, accordingly, u{sg) satisfy the condition
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m.u(sg) + (1 - 7) u(so) = u(sl), and hence mu(sy} = 1, u(sg) = % >1,
Similarly, if 55 is worse than s,, we find a number » such that
the decision-maker is indifferent between s, and (sq, 59; m,1- 7
and define u(sg) by u{sy) = ﬂ.u(sl) + {1 -7}.ulss); and heace
u(sg) = - #/{1 - 1) < 0. It is easy to see that this utility scale,
now extended beyond the interval [sq, sq], will still possess the
required property. Of course, the numbers in the scale will |
change linearly as sq, sj—the prospects chosen to have ZeT O
utility and unit-utility--are changed; but the required propexnty
is preserved, AN\

The postulates tacitly used in this observation of utiliiy-
scaling can be roughly listed as follows: N

1, Numerical function u(s} exists, such that\';i(sl} > ufsp) if
and only if s; is preferred or equivalentto ss.
2. If u(sy} > u(Sy) then, for any sz and ahy probability b,
ulsy, S35 b, L - p) 2 ulsg, s3; b, I p).
3. If u(sq) > ulsg) > u(sg) then there exists a probability p
such that u(sg) = u(sy, s3; pA2- -
wiww . d brauli b.rgr"y ‘orgin
2,9. Unknown and subjectiveiprobabilities. A natural objec-
tion against formulations 1iké, ours is to say that in reality the
probability distribution R of external conditions is not known.
In this case the problem becomes one of statistical inference,
invoking principle l’{ke’ "known a priori distribution cn the
space of F's," “m}imax,” ete. For the case of a "one~person
team" (when agtivities consist only of observations and actions,
no messages'heing sent} one might refer to works like
Dvoretsk)(-‘Kfefer-Wolfowitz' second article on Inventories [5].
Theﬁ;r‘?umption of a known a pricri probability distribution
is pa¥iieularly germane to our problem, whether in the simple
cag@of three-phase-teams or in more complicated cases. In
- three-phase-team, there is no opportunity to acquire or im-
prove the knowledge of the distribution ¥ in the course of the
team's operations, In this case, and if ¥ is not known from ap-
propriate statistical manipulation of data collected in the past,
we shall still say that a rational decision-maker, if he makes at
all choices among actions, has to make consistent assumptions
about the probabilities of outcomes of the actions just as he has
a consistent scale of the utilities of those outcomes. A postu-
1?.t10nal basis for the simultanecus existence of subjective utili-
ties and probabilities, extending in a plausible way the postulatés

of 2.8, was proposed by Frank Ramsey, and more recently by
L. J. Savage,?

%

£
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If the cperations of a team form a sequence of more than
three phases, it is still useful to obtain the benefit of subjective
probabilities. The rational decision-maker will start with some
subjective probabilities, Even if they are mere hunches roughly
summarizing his previous experience they will help him to lay
down a plan as to how best to respond to any given sequence of
future ohsarvations by an appropriate sequence of actions and
communications, His actions, in this case, may but need not
include dzia manipulation to provide progressively improved Q4
estimates of the distribution F of observables. A\

2,10. Orders. In 2.2 all messages were defined as~§tate—
ments (reports) about the external world. Reports &re different
in verbal content (and therefore differ in cost) fmfp Y'orders' or
"task assignments," It seems, however, that. bjf‘?mtroducing or-
ders no essential change will be introduced dn'our problem, at
least at the present stage of analysis. /

For example, suppose the relevant féatures of the world are

characterized by two variables, X1 :afj.d‘xz. Let team member 1

cbserve x; and team member %@hﬁggﬁ&ﬁmaﬁg%}ﬂ the re-

spective observed values be x3@and xg0. Con idet first the
following rules: Rl consists Of Ryl only, viz.: 1 tells 2 the
observed value x;%; RO consists of Rg“ only, Viz.: 2 chooses
3 = 290 that will mini ize u{ag, x1° x99). In this case, mem-
ber 1'is a mere "repéPter.” The payoff function u(ag, X1, Xg}—
a function of three ¥ariables—is fully known to member 2, but
need not be knowh to member 1.

Now suppos&;instead, that it is the member 1 who knows the
function u(agpXy, Xo), and let the rule B! = Ry be as follows:
1 shall communicate to 2, not the cbserved value x19, bui the
"task,":~'\\.9"., the function of two variables

N ,"’ uo(ag, Xz) = u(aZ) Xlo) XZ}'

'foanibEr 2 then proceeds to accomplish the task. That is, the

rile RI - R2H is: member 2 (who had observed X3 = x90) shall
choose ag = ag® so as to maximize up(ag, x20). In this case,
member 1 is the "boss™ he determines, in the light of his
knowledge of xy = x10, the special task that member 2, the
"subordinate," has to fuliill—i.e., the specialized payoil func-
i“.i(m ugy that 2 has to maximize. In military terminclogy, 118
In charge of strategy, while 2 is in charge of tactics, The ob-
Servable x; may consist of information about the overall plans
of the enemy (plus the information received by the commander

during his training), while xg may be 2 local situation. The
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distinction between reports and orders will not be pursued fur-
ther in this paper.

2.11. Non-additive costs. The definition of net gain in (2.6.3)
is quite appropriate when the amount to be maximized is the ex-
pected net money gain. In more general cases, one cannct rep-
resent the maximand as the difference between (expected) gain
and (expected) cost and will use some more general function{te
describe net gain, However, (2.6.3) will heip us fix the ide\;as.

€ N\

2,12, A remark on the general multi-phase case,Tl:The
three-phase case can be generalized by constructing, for every
phase t=1,+ - =, T, the following matrix with ntf¥ows and
columns {regarding a; as a set of values): ,w}\

al; means: "what i tells j" (a subset{nixi or &}

3-'1;0 means: "what i does to the oqti‘\{de world" {&n element

of &;) N
agi means: "what i cbserves.jpr the outside world” {an ele=
ment Of xl) W A T au %Zﬁ}"y.ol g.1n

ah, a%o are empty. 0%
Then af = i-th COlum]l% i's recently acquired information,
FY ok Jat=1 . .
a:ti sequence\(\aji;; 3§ ) = i's state of information,
i

ayi = i-th row)= i's messages and actions.

Fn a stationariy\ feam there exists a set of rules R={R{,- * *; Rp)s
1ndemn@gn}of time, such that

a}}%R(ﬁ'l), i=1,--+, n,

Theiteam's gross gain for the perigd ending at T depends on

Mthe’_sequence of external events, ﬁo; and on the sequence of
N dctions taken, dg'; but since the latter depend on 2 and on
the rule R, the gross gain is u(3;, R), say. The cost of com~
munications will also depend on 3, R. Hence the net gain is
Y(ao, R), say. The distribution of external states a(t) depends,
in general, on the sequence of previous states as well as on the
sequence of previcus actions ("controlled stochastic process")o
Hence tcl)le distribution of the sequence :'ig depends on the initial
stat%. ag and on the rule R. Write this distribution as

= ()
F{ay; a8, R). Then the expected net gain (integrated over the
space of all sequences ag ) is
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f v3T, Ry dF@EJ; a8, B) = V(R; ag; v, F),

say. The rule R:ﬁ that maximizes this expression will depend
on ag, v and F. As in the three-phase case, the problem is to
find how certain classes of rules (certain networks and proce-
dures) correspond to certain classes of tasks—or, more gen-
erally, to certain classes of net gain functions—and to certain
classes of distribution of external conditions, ~

2,13, Procedures and Networks. In the problem definedso
far, one seeks to determine wnat each member has to do.g’r"té
communicate in response to observations he makes and to'mes-
sages he receives. Which are the members from whom he can
receive and to whom he can send messages is a given not an un-
known of this problem, The unknown of the problem is, in other
words, the best procedure (the rule R), giveniite network of
communication, The other givens are thecOst ¢ of sending a
message; the gross payoff function u depending on certain ac-
tion variabies and observables; and the rgi'?ggbility_distribution
F of the observables, WWW wrALbTary org.An

In a more complete team proplem (it may be called the prob-
lem of the team's constitution);“the network is not given. In ad-
dition to the cost ¢ of semjiﬁgfét message over an existing net-
work (cost of using the n{twork) there is the cost C = C(N) of
constructing a network(N. More precisely, if the team isa
three-phase-team, G(N) is the cost of maintaining and amortiz-
ing communicatioq facilities per period of time needed to g0
through its threé phases. The cost C depends on the nature of
the network N~involving, for example, one-way communications
{letters), twolway communications (telephone}, many-way con-
municatiens” (conferences) between certain members. C does
not depend on whether certain communication lines are or are

not betng used, i.e., on whether a message 1s or is not actually

&engy

Given, then, the cost ¢ of sending a message; given the‘ft_mc-
tion C(N) determining for each network the cost of maintaining
and Operating it; and given the functions u and F, the constitu=-
tional problem seeks to find simultaneously the best pair {N,R),
Le., the network and the procedural rule such that the expect:ed
net payoff be a maximum, The procedural rule R consists, in
three-%aSe teams, of the communication rule RI and the action
"%le R The unknowns of the complete team problem are: N,
R* and pI
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Note that the concept of network does not confine itseil to the
physical communication plant. The description of a given net-
work (alsc called "organization chart”) states all the permanent
"positions within the team, thus including all long-tern employ-
ment contracts, all regularly occurring conferences {but not
emergency conferences), periodical reports {but nct ad hoc re-
ports), etc. The number of team members is thus itself a char-
acteristic of the team, and the cptimal size of a team {or 5 given
task—i.e., for a given function uf{a, x)—is a part of the congtitu-
tional problem. )

7

The distinction between network and procedure is EI:QZiTOé,‘OUS
to the economists' distinction between long-run decisiens {such
as building a plant} and short-run decisions {such{a®buying a
certain amount of fuel}. Although important intetmediate cases
exist, the distinction is useful at the presenfNstdee of analysis,

One way to study the complete team problém is to start with
"pure network problems™ and "pure pr'oct}dural problems." In
pure procedural problems, the network.is given. Hence the
function C{N) (costs of maintaining‘é'ﬁetwork) is not invelved,
but the cost ¢ of sendingla-adelssagéoisg iriThe unknowns of the
pure procedural problem are,(infhree-phase teams): the com-
munication rule R! and the @etion rule RIL,

In pure network probleins, on the other hand, the network N
is not given, and the cgst e of sending a message is assumed
negligibie, Therefox@':x{a.ny communication line if it exists can
be assumed to be WSed, so that R! is uniquely defined for each
N. The unknowns,of the pure network problem are (in three-
phase teams){’the action rule RH and the network N,

Section.3.0f the present paper can be said to deal with a pure
network-gtoblem, although in a very rudimentary form, A some-
what\ e detailed analysis of pure network problems and of
complete team problems has been attempted elsewhere: see

. [12}, (14]. Section 4 starts with a pure procedural and ends Wwith
{ “a-constitutional problem of a very simple nature.

3. BUYING INFORMATION

3.1. The value of an inquiry. Some important aspects of the
team problem are brought out in the following simple case. A
berson's profit (utility) is u(a,x) where a is his action and x 18
the state of environment (an element of the set 3 ). The person
knows the distribution F(x). Assuming that he tries to maximiz®

expected profit, how much should he be willi for exact
information on x? villing to pay for
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Compure the maximum expected profit U under two alterna-
tives: when the person has not inquired, and when he has in-
quired about the actual value of x, If he has not inquired, he
will choose an action which is independent of x and which will
maximize the expectation of the profit. This expectation will
therefore e

U = U, = max Eu(a,x).
a

If, on the other hand, the person has inquired about the actual™

value of x he will be able to choose an action that will maximize

the actual profit, The action chosen wil? depend on X. Theac-

tual profit will be max ufa,x). The expectation of profib will be
a -

NN
< 3

U= Uy = Emax u(a,x). \\
a 9

The difierence Ujp - U, can be called :w,\\the value of inquiry:

G.1.1) w = E max u(a,x) - m;.X?Eﬁ(a,x) 20,
a 7N
for U; cannever be smaller t‘ﬁ’éfh“’filg‘.@”“bT‘a"y-or‘g.in
The statement that an inqu*inﬂr’ca,n never have negative value
("mo damage in knowledg,el’f)' is easily confirmed as follows.
Consider first the casewheh inquiry has been made. Then to
each observed value of(x will correspond a best value @ of the
action variable af \Qiz’, the value of a that maximizes u(a,x)
for the observedl. %lue of x. The relation between X and 4 we
can write as A =8 (x). We call the function 4 the best rule of
action. Singe in applying this rule of action one cbtains the
highest valae of ufa,x) consistent with the observed value of X,
the re ﬁl}"bf applying this rule of action for every X is to oh-
tair}’ﬂhlghﬁr expected value of u{a,x) than in applying any other
rulg'of action. We can thus write
\\‘ ) Uy = max fule (1),%) = Eu@(®,%),
to indicate that the expected utility has been maximized with re-
spect to the function a. Note that in the equations just written
the symbol a does not appear; the atility u was expressed as
depending on x and on the rule of action, &-

Now consider the case when inguiry has not been made, This
time the unknown function @ (X) degenerates into a single un-
l_mo“’n constant, since expected utility has now to be maximized
in ignorance of x. We can write
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Uy = max Eula (x),x) where a(x) = unknown constant,

Thus Uy and U, are hoth obtained by maximizing the same
quantity over a set of functions, but in the case of U, this set
is restricted by the condition that a{x} be a constant. I is
clear that if one is restricted in the choice of the rule of action
ohe can never obtain a better result than if one is not so re-
stricted. That is, Uy 2 Up. ~

3.2, Example I: "guessing the color." The player knows,
that an urn contains a proportion p 2 1/2 of black balls, &l
other balls being red, A ball is drawn {from the urn. JiMg not
shown to the player but may be shown to his agent, {'he niayer
has to state the color of the ball. He wins a dollar AF his stale-
ment is correct, loses a dollar if it is wrong. How much should
he be willing to pay the agent for informing himdabout the actual
drawing ? N

Soluticn: - the player would not empléy“an agent his best ac-
tion would be to bet on black., This would yield him an expected
gain Up = p+l + (1 - p)(-1} = 2p - 1 doMars. If, on the other hand,
he employs an agent,\'\’fzﬁ\'é’él%%gjt%cfg%i?{ %s‘“ul :, 1. Hence the
player should be willing to paythe agent any amount up to
w=U) -Up=2-2p, We calll'w "the value of inquiry'

3.3. Example II: "asmenopolist,” A monopolist sets the
brice a of his produ%\a‘nd produces just enough for the demand.
At price a the demiand is hx - ka where x is a random variable
depending on the/public's taste, and k is a positive coefficient.
The mean . a.nt}llhe variance o2 of x are both known to the
monopoiist..,‘:?br greater convenience, and without loss of gen-
erality, thé.coefficients h and k can be made equal to 2 and 1,
resper;t?vély, by appropriate choice of units. Then the profit is
equgu.,l\~.t§r a(2x - a) minus the cost of production. Assume this
gogh.to be independent of the amount produced, How much can
Il:he'monopolist pay a market research agency for keeping him
informed of current public tastes, i.e., of the actual value of x?
!We shall assume that, for the monopolist, utility and profit are
identical, i.e,, he maximizes expected profit.)

Solution: Since cost is independent of his decision, the
monopolist can disregard it. He will maximize the expectation
of the quantity u = a(2x - a). If he is ignorant of the actual value
of X he chooses the price a %o as to maximize Fu B a(2x - a}
=af2u- a); the chosen price will be a = i, resulting in an ex-
pected profit (disregarding constant cost) ,Uo = p.2. If, on the
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other hand, the monopolist is informed of the actual value of x,
he will choose every time the price a soas to maximize
u=a(2x - a); i.e., his best rule of action will be: a = x. This
yields an expected profit (disregarding cost) Uy = Ex2 = (u.2+02).
Hence the value of inquiry is w=Uy - Up = g2, Thus the serv-
ices of the market research agency are the more valuable the
stronger the variability of tastes; (although, if the demand were
not a tnear function of price, the approximate measure of vari-
ability would turn out to be not o2 but some other parameter.Qf
the distribution of x). Ishall not gubscribe {0 a newspaper if
the news does not vary much from day io day! O\

7'\

3.4, Example Il "a specuiator.” Suppose a speculator
cannot buy or sell more than one unit of a commodity: Let x be
the difference between tomorrow's and today’ s price. The specu-
lator knows that x is distributed uniformly between M - p and
u +p. How much is it worth for him to iQ{'esee exactly the price
change, x? ‘,\ g

Solution: Suppose first that he is.i@&orant of x. I the mean,
i (known te him!) is positive his bé‘E]'actjon is to buy one unit;
if 4 is negative, the best actic;qu?"’i"g'éo‘?élﬂtﬁﬁé%ﬁiﬁ-ilmhe expected
gain is Ug =|n|. If, on the other hand, he 18 informed of the ac-
tual value of x his best rulesof action ig: to buy one unit if x is
pesitive, to sell one unip if x is negative, This yields him a
gain |x!. To compuje the expected gain Uy = EIx| distinguish
two cases: 1) if | {\é p, X has always the same sign and
Uy =Elx| = |u|~‘—j%o; 2) if || £ p, we have

\<& L [(BP o '
Uy .:\'.E[xl = 2_p§ x dx + -xdx
.'\‘0

\ 0 p-p
RS ) 1_((u+p)2+_.u_-_£13) _utap?
e 2p 2 2 2
Qﬁ'herefore the value of inquiry is
0 if [ul 2 p

(3'4) w = Ul - UO =
(lul - )%/2p flul & P

Thus, inguiry is the less valuable the stronger is the known bias
|_‘L1| of the distribution of the price difference X and the smalier
is the range 2p of its variation. (See Figure 1.} This is a8
would be expected on intuitive grounds.
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Fig. 1. The "speculator's cdse’l.

Value (w) of inquiry when x is distriated uniformly with
mean p and rangé 2p.

S

3.4.1. It may be noted that the'speculator's case" as de-
fined has a more ger‘f’e\%ldaﬁaplf%@fﬁrdﬁ%eﬁﬁnit might appear. In-
stead of interpreting the extrethe values of a as “buy or sell

one unit" one might regard them as "do or don’t.” In fact, any
two-valued set of decig@ns, so frequently occurring in practice,
would fit the examplef provided u is linear in a; and, only for
the sake of simplifyigg the computations, x, or some transform
of it, is assumedto be uniformly distributed. For example

a = +1 may medn "attack,” a = -1 "don't attack,” and x = differ-
ence betweemieur forces and those of the enemy. In all these
interpretations, since u = ax, positive x makes a = 1 advisable,
and negdtive x makes a = -1 advisable, Clearly, with u linear
in a,\the cheice of action that will maximize the expected value
OfaX is not affected if the pair (~1, +1) is replaced by (0, 1) or

\lt}y"any other pair of numbers of which the first is smaller than
he second.

3.5, Value of inguiry and "amount of information." Let us
NOW summarize our examples using our general notatiot.

In the "monopolist's case', u=a(2x - a) and F(x) has known
mean t and variance o<, QOne obtains

Uo =m:,xEu = pZ; (best a=pu);

Ui =Emaxu
a

w =0'2

fl
Il

(2 « o2); (best rule of action: a = X);
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In the "speculator's case", u=ax; -1 £ a £ 1; F(x) is uni-
form, the lowest and highest values of x being, respectively,
£ ~pand ;2 p. The quantities Ug, Uy, w were evaluated in
3.4 above,

The case of "guessing the color” is a variant of the specu-
lator's case; u = ax; a and x have each only one pair of values
(-1 and 1),

Thus, the value of inquiry, w, depends on both the distribu-
tion F{x) and the payoff function u(a,x)., The amount of informa-
tion as defined by Shannon [19] (or its negative, the “entropyV
or "uncertainty' or "randomness") depends on F(x) only)as
does the amount of information defined by R. A. Fisher XTl'i']- Ag
a result, the value of an inquiry, for a given payoff fufiction, need
not coincide with, or be related in any simple way{to) the amount
of uncertainty in Shannon's sense. For examplefin 3.2, the
value of inquiry—permitting now p to be smidller than 1/2 and
writing g = 1-p—is w=1 - |p - q|, whileShannon's uncertainty
in the case of binomial distribution is pr@ortionate to (or to the
logarithm of) pP q4. Note that both exXpressions have a maxi-
mum when p = 1/2 (maximum unc;e‘ﬁta‘inty) and a minimum when
p=1 or C (certainty), If x is oty thstribmedrwith mean
¥ and range 2p, Shannon's entiopy depends on p only; while the
“value of inquiry" in the cagevof such a distribution and assum-
Ing the payoff to depend linearly on a bounded action variable a,
depends also on the m an) (i, as in (3.4) above, Finally, in our
éxample of 3.3, the ¢alte of inquiry is proportional to the vari-
ance og, for any distribution, while entropy is related to vari-
?.nce in a simple™way in the case of normal distribution but not
In general. D5

The con e:pts of value of inquiry and of amount of information
are thus.dif erent, They serve different purposes.

RS
) 4. ONE OBSERVER, ONE ACTOR:

'\

W™ NETWORK, PROC EDURE, CONSTITUTION

4.1. The problem of "buying information” as a network
Problem. In 2.13, we distinguished between ' pure network prob-
lems ™ 'pure procedural problems,” and complete or "constitu-
Honal" problems. In Section 3 we have dealt with a simple
(Pel‘haps the simplest possible) pure network problemt The
decision always to obtain information or never to obtain it was
Supposed to be taken once for all, Such decision defines a net-
work, If the decision is never to receive information, the
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network chosen is that of a team consisting of a single man, an
Mactor,"” who takes no observations, but always acts in a certain
way, that is the best on the average: a "traditional™ or "routine”
system. If the decision is always to receive information, the
network chosen can be interpreted in two ways:

1) as a team consisting of a single man ("'observer-actor")
who is provided with more or less costly physical facilities for
ohservations, or uses a non-negligible part of his time for ob-,\
servations;

2) as a two-man team—an actor and an observer—with ghore
or less costly physical facilities for observation and comrﬁ'uni—
cation; in this case, the cost of using the commurﬁﬁt{oh line,
once such a line is established {or once a fixed, nqni:ﬁégligible
part of the team's time is set aside for communigdficn), is neg-
ligible, so that the observed value of x is always communicated
by the observer to the actor, regardless of thes'vbserved value of
X (e.g., regardless of whether there is or/there is no "emer-
gency"'). N\

) ¢ 3
A

4.2, A procedura{\,gmbmm“bL&tyy@;gnaw, consider as given
the following network: One member of the team (the "observer™)
makes cbservations on the extéril}al world, There is a one-way
communication line between*him and the other member (the
"actor}, After having made the observation the observer may
either communicate o;-{rie\t communicate it tc the actor. In the
former case, a cost, X6, dollars, is charged to the team, and the
actor chooses hisggtion on the basis of the observation com-
municated to him?; "In the latter case no communication cost is
charged, but the*actor has to choose his action without knowiedge
of the actua.l“s\tate of the external worid. Of course, the proba-
bility di,%tﬂiution of the states of the world is assumed to be
known in each case.

:T{re ‘problem is: 1) to find the rule of communication for the
,0b§erver, L.e., to determine conditions (observed states of the
Warld) under which he shall or shall not report to the actor;
and 2) to find the rule of action for the actor, i.e., to determine
which actions he shall perform upon receiving certain communi-
cations or upon receiving none.

Denote as before by X the set of all states of the world X.
Let X S X be the subset of X such that if the observed state
belongs to X, the observer shall send no report., Thus, not to
send a report is tantamount to telling the actor that x is in X.

The rule of communication can be written as follows (with X
yet to find):
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RIx) 3L if xe X (no report sent);

il

(4.2,1}

= {x} if xe X - X (report sent).

The function R corresponds to Rl of Section 2.6, Its value
R(x) is the information made available to the actor. The rule
of action can be written as follows:

Action a® if R(®) = X, x€ X

(4.2.2) % A
Action a(x) it R = {x},x¢ X.

The action a° and the function & are yet to find. a® is'l;t\ié‘a\c-
tion that maximizes the conditional expectation of grogs\payoff,

270

given that X belongs to X: A )
_ o f
(43,3 ~ max fx u(a,x) dF(x) = fx u(a ,x)',si?if*)-

w\J/
Thus 2° does not depend on X. 1t depe s})n the set X that the
team chooses in advance of observatiuily " We can write 2% =
- AWML imizes
a%(X). On the other hand, a(x) ﬁ;@ﬂ&%ﬁlﬁ&g—?ﬁ% Xmize
ufa,x} for given x: oW

{4.2.4) max u(a,x) = u[{tv(:!‘i),.X], xe X - X.

The function @ togethe ’{vith the constant 40 correspond to rI
of Section 2.6, Clearly) it is advantageous for the team to have
the report withheld Whenever the observed X is such that
u[a®(X),x] is lapgeyr than ula(x),x] - ¢. Thatis, the net expegted
gain is maximi'xe'é if X, a° and @ satisty the following condi-
tion: \

425 3O x - fxofa0(,x] > ula] - e

[ThiSTi:ntuitive result can be easily obtained formally by express-

ing'{He net expected gain through combining (4.2.3) and (4.2.4)].

N\ 4.3, Example: the procedural aspect of the ngpeculator’s
problem™ As in section 3.4, let u=a% 14 a & 1. Then u
takes its maximum when a is either -1 oF +1. a =1 may mean
"buying one unit" and a = -1 rngelling one unit,” The ob'servable
X may mean the predicted price change, and u the profit.

Therefore a negative x makes 2 = -1 advisable; a positive X

makes a = +1 advisable. [As remarked in 3.4.1 above, 4= 1

may also mean "attack," a = -1 may mean "don't attack,” and X

11
may mean "'difference between our forces and those of the enemy. 1
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To simplify computations, x is assumed to have uniform proba-
bility distribution.

The pure network aspect of the team problem given by the
described nature of a, x and u was discussed in 3.4 ahove.
We shall now deal with the procedural aspect of the same prob-
lem and, later (in 4,5) present the solution of the compiete
problem of "best constitution" when a, x and u are as de-
scribed, N\

4.4. In our example, the observer finds the actual vajte’of x
and may or may not communicate it (at cost ¢) to the ’a;btor who,
in either case, has to decide whether to buy cr sell ape unit,
What are the best rules for communication and gcfjon; given the
(uniform) probability distribution of x? To simplify the problem
we shall first assume the mean 4 = 0, so thatsp < x < p,

The communication rule ean belong to oug of two classes:

I+ : call only if the desirable acfioR 1 (= "buy™}
I'- : call only if the desirableagtion = -1 (= "sell"}.

Let us first look foﬁrﬁk!?_msdhl?&l@’r%ﬂm]gjﬁn Then, if the acfor is
callied, he will choose a = 1; ifthie is not called, he will choose
a = -1, In the notation of Seetion 4.2,

a H&x) =1, x¢X
st a% =--1 xeX,

: N
Since u = ax, cphltmn (4.2.5) defines the best set X as
follows: X (the sef’of observations that are not communicated)
shall consist pfall x such that

\\ =X>X=-¢, le,x<c/2

N

Henceﬁi«.’he best communication rule belonging to the class r
1s: teicall whenever x 3 ¢/3. The corresponding best action
;;ulg\is: buy if called, sell if not called,

) We find by a similar reasoning that the best communication
rule belonging to the class ¥'~ is: to call whenever x Z -¢/2.
The corresponding best action rule is: sell if called, buy if not
called,

Using now the known distribution of x, we have to compute
the net expected gains (V* and V-, say) obtained under these

two competing rules, and choose the rule yielding the higher net
expected gain, In our case, we have
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1 e/2 P - c
vt - 5= - xdx + (x - c)dx Eé o
PLJp c/2 i

-

= 0 ; %é p
1 -c/2 o 1 c
VT o= 5o {-x - ¢)dx + xdx,-iép
PlJ-p L2/2
= 0 , %é o] \
Hence \\\
v v = (p-9Y2, L% C

=0 , ¢ =2,

Thus in cur case both rules are equally good and can be summed
up as follows: if the cost of communication Sx¥eeds or is equal
to the range 2p of the observable, the opgerver shall never com-
municate, and the actor shall take any. &ction he pleases (since
the expected gain = { in any case); Jif\the cost of communication
is less than 2p, then either (1}V‘§hé.djhmrﬁﬂﬁ1§hgllgqall whenever
x >¢/2, and the actor shall buy-whenever called; or (2) the ob-
server shall call whenever‘x'{’-c/& and the actor shall sell
whenever calied, We shall‘eall these rules {1) and (2).

4.5. If we had notiﬁs\sumed uniform distribution of x to be
symmetrical (midpaint 1 = 0) the two rules would not turn out
to be equivalent{ Mn this, more general, case the solution is as
follows: I o/22 p - |u|, never cally buy (se}cl) if >0 (<0,
always yielding the expected gainiu!. I c/2% (p-|ui), then
apply rule\¥1), or rule (2) above depending on whether ¢ is
negative\Or positive {See Figure 3,) This agrees with common
sensé, > If u < 0, then a large positive x( 2 ¢/2) is less likely

_te"gCeur than a numerically large negative x( -¢/2); and it 18,
of tourse, preferable to pay for signalling rarely rather than
frequently.

I, as suggested in 3.4.1, 2 = +1 means "do” {e.g.,
“attack') and a = -1 means "don't,’ then rule (1) becomes:

“call to encourage doing whenever the situation is very favor-
able relative to cost of communication (x> ¢/2)"; rule (2) be-
comes: "call to warn against doing, whenever the situation 18 '
very unfavorable relative to the cost of communication (x < -¢/2J"
Roughly, if favorable situations are less likely to oceur {1t < 0),
apply rule (1); otherwise, apply rule (2).
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— pa|

@-p #‘* o i
l :I x
Communication: Do not egll .y (:‘;1111 .
s i <o
Action: qell | Buy
N\
N
2 A\
'\ :
N
c # ~~.';’
#p 2 0 0 7\ o
< % | %
Communication:| Call Do not call SNINS 7
7 >
v u>o
Action: Sell Buy N
7 ¢ ~\

S

Fig. 2, The "speculator's cage‘;:with one ohserver,

Rules of action andmodtrmmﬂaibuiﬁﬁibl@dall" region shaded)
when x is distributed unifogfily with range 2p and with
mean i1, negative (above) Ot positive (below),

I 4 # 0 and the bedhdppropriate rule is applied, a reason-

ing similar [but mere ‘complicated: see [12], pp. 15-17] to that
in 4.4 yields the iollowing net expected gain:

4.5, N o= w1 -9%20 1 Sepo ups
{4.5.1) V’\."I‘u|+(n wl-5)2% i 5€p- Lnl;

N\ [H | otherwise.

N

4.6; The “constitutional” problem. Let the cost of having an
_observer (per time period needed for one decision) be C. We

\.lggwe now the choice between two networks: one without, the

ther with observer. In each network the best appropriate rules
will be applied, We have thus to choose between two "constitu-
tions™: ) not to have an observer, and let the actor use the best

action; TII) to have an observer, and to let him apply the best

rule of communication while letting the actor apply the best rule
of action,

Under Constitution I, the best action is: a = -1 if & < 0,

a=11f u >0, This results in a net expected gain Eax = aEx =
a,_z =

Vi = [u],
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Under Constitution IT, the expected gain obtained under the
best rules of communication and action was shown in (4.5.1),
where the cost ¢ of sending a message but not the cost C of
maintaining an cbserver {per period of time needed for each
decision) was taken into account. The expected gain, correcting
for this latter cost, is therefore

Cc . C
Vi = ~C+lpi+(@-1ul -2 i gLe -l

= -C 5|l otherwise. O

Therefore the difference Vyy - Vp is positive, and hence Cénxfi-
tution II is preferable to I if the parameters p |ul, c@nd C
obev the conditions (5.‘;

< \
(o - Ful-%)z 2 2Cp, P—Iﬂl'i;\ 5

hence {taking the positive square root because of the second in-
equality and dividing by p): AN

A
.UJ'—I + —_ + ‘!\/’ ig‘é 1 "
P 20w ¥w Bbraulibrary org.in

That is, if best rules of action aﬁ&éommunication are used, the
team shall have an observer.c)iih; if, relative to the variability
(measured by p) of external events x, 1) the costs ¢ and C are
small and 2} the expeq}a@ion u of x is not tad far from zero
(i.e., if favorahle eve{fts‘ are not much more, and not mueh less,
likely to occur tha “mifavorable ones). (See Figure 3.)

A
\"s, OPTIMAL INEXACT INFORMATION

5-1.-'§1“Sections 3 and 4 the observer could send either an
exacteéport or none at all, In Section 9, however, the problem
'Wa%\défined more generally. Information can be given with vary-

\lﬁg degrees of precision.

The organizer of the team can determine in advance 2 parti-
tioning J? of the set X of states of nature into disjoint gubsets
(possibly infinite in number) which we shall denote by

XS)’ XBZ), .o,

The observer finds that x belongs 1o Xém), say. He compuni-
cates to the actor the index m. This index will thus depend on %,
the actual state of nature; and on p, the partitioning chosen 1
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WIS

. |
iz s

A
Fig.{?{f}}he "speculator’s case,”

Region (tria(n,rg,:lh‘ar) where use of observer is advisable,

W = =0, 7 = =
{*)\‘ﬁ ith p=1and C =0, T B 8'}
x;\ﬁtl

¥

£
ad_vapee}“‘[‘he actor chooses then an action a that will maxi-
mizeithe conditional expectation

A
<>’ ./};(m) ula,x) dF (x)
E {u(a,x) Ix e X&m)} N
-4;(111} dF(x) ,
P

the denominator being the probability that x falls into the subset

m -
X . Hence to the partition P and to the given functions u and
F will correspond an expected payeff
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U = U uF) = Zmaxf uia,x)dF{x) .

DR = Z0 Sy @9

The quantities Uq and Ug defined in 3.1 were extreme cases.
U=Uy if every X m) .onsists of a single element of th
("exact information™. U= Up ("no information”) if Xp ) - X,

therefore U, = max f u(a,x}dF(x). We can thus define the
a ;
value of an inquiry corresponding o a particular partition Plas

W) = Up) - Vo

o
The acior will be informed into which subset Xl()m) x falls, only

if such communication costs less than w(p). R

7

|\

5.2. Code. A given partition JJ determities) "code," ac-
cording to which an observed state X will indiice a signal
m = m(x). The function m(x) may be calleia "code.” The code
studied in Section 4 was a two-valued-one: either "eall’ or "'no
call" depending on whether X falls dnto the one or the other of
the two intervals into which X Em&%f@wﬁiggggy [Fie. 2.) A call
as well as the absence of a call\tenveyed to the’acior a certain
information, We have seen ‘t}';’at in order to implement the code
two kinds of cost had to be borne: a constant cost C of main-
taining the network and(@(random) variable cost of using it.

The variabie cost hadhiwo values, ¢ and zero, depending on
which of the twossignals ("call,"” "'no call™) was used. In a more
general case, thevariable cost a}r have more values: at most
as many as there are subsets X m}

With the)dost thus defined the "constitutional” problem of
Section\4 “gan be extended as follows: how many observers shall
there Bin the team, and what codes shall they use? We shall
not touch in this paper on a still more general extension that

Jould introduce two or more actors.

) Two types of optimal partitions p of the set X present
special interest: 1) an optimal system of intervals for each of a
given number of abservables; 2) an optimal set of observables.

5.3, Optimal system of intervals. If x is a real number, and
X an inferval, X may be partitioned into sub-intervals. These
may or may not be of equal length, I they are, their ngmber n
measures the precigion of information. For example, if n = 107,
k integer, variations of precision are expressed by the number
k of decimal digits, We have then 2 sequence of partitions:
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Px. k=0,1,- . Onthe lines of (3.1.1) the gross expected
utility will increase, or at least not decrease, with increasing
precision of information; while the costs of hoth maintaining
and using the network will presumably alsc increase or at least
not decrease. The problem is to find the optimal value of k.

5.3,1. If x is a real vector of, say d dimensions,
X =(xy1,* **, X@), the same principle applies: about each—say
the i-th—of the d components, an inquiry of precision K; can®
be made., The expected gross payoff as well as the costwill de-
pend on the vector (kyp, * », kg); and the vector maxinfizing ex-
pected net payoff will be chosen, « M

5.3.2, As pointed out by L. Térngvist the optimalcode will,
in general, consist, for each real variable, of‘jﬁtervals of un-
equal rather than equal fength. (The unequal¥brackets' of pube«
lished income statistics provide a well knowh example.) Thus
the maximization of net expected payo £'will be performed, not
with respect to a precision measuréNk)but rather with respect
to the code function m(x), as definkédin 5.2,

wiww.dbrauli b.f'éiry orgin

5.4, Optimal set of observables, Another concept of pre-
cision of an inquiry concerning a d-dimensional state of nature
(X1,* s, xg) is determ@ped'by the components—not necessarily
real numbers—about whieh information is sought, this informa-
tion being exact, {;uc\z‘.e’xample, if xq represents future weather
and x5 represenis future prices, a farmer may wish to inquire
about none or gge)or both of these, before making a decision on
what to planfs Presumably both the gross expected payoff and
the cost of midintaining and using the network will increase (or

at leas§;n:5’3f decrease) if, to a given set of observables, an addi-
tionalfobservable is added,

94,1, If some of the components (xq,- * +, xq) are real
Rumbers, the principles of 5.4 (choosing the variables about
Which information is sought) can be combined with those of 5.3
(choosing the best system of intervals for each of these vari-
ables). If all components are real numbers, 5.3.1 embraces

both principles: kj = 0 means that no information is given
about the i-th component,

. 9.5. An example of buying precision. Consider again the
monopolist’s case™ of 3.3:

(5.5.1)

u = a2x - a},
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We have seen that Ug = u2, Uy = Up + 02, To simplify our il-
lustration assume in addition that x is distributed uniformly

over the interval 05 xS p. Then p= p/2, 02 = p2/12, Uy = p2/4,
Uy = p?/8. Let us investigate the "buying of precision,” in the
sense of 5.3, but without confining ourselves to the case when
1, the number of sub~intervals, 1S 10K (or 2% etc,), where k =
the number of decimal (or binary, etc.} digits used, The ob-
gerver informs the actor about the interval into which x falls.

That is, the observer gives the integer m, such that N\
(5.5,2} 1€2m<n and E_-—]-'-péxégp' 2AN
n n 2NN\

Thug m depends on n and X; m is the smallest intgg'a;:.not
exceeded by %}5 Upon learning m. the actor ch@gés an action
in the midpoint of the interval: a : a(m,n) = p(in}- %)/11, since,
under our assumptions, this maximizes,tﬁ&c’;mditional expecta-~
tion o\
E {u(a,x)|m - 1.~3<:i1‘x/p £m}

which then takes the value ,~:‘::{)\?w'dbraunbrary'orgm

Ulm,n} = [a(lzl,n‘)jz. = (m -%‘)2 . p2/n2 .
Hence, the (non—-cond’it‘rqﬁ':lal} expectation of payoff that the actor
has if he chooses adegree n of precision is

U+ Soflmyn - £ [ hgned LIS
m=1 n
1

0
.s'§.‘pz (—é— - __E)
N 12n

N\
“This agrees with the two extreme cases computed above:
u{t) = Vo p2/4 (case of "'no inquiry");
Ule) = Up = p2/3 (case of "exact inquiry').

H

If the "value of precision" )
win) = Uln) -UQ) = o2(1 -n_z—) /12
inquiry will not be made with

falls short of the cost of inquiry,
that precision.
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We might develop our example further by assuming that both
the cost and the precision depend on the size of a sample.

5.6. An extension to several observables. Let

(5.6.1} u = 3(2'§ Yi% - a),

i=1
an extension of (5.5.1), with x; being distributed uniformly and
independently over the interval 0 <x; € p;. Thus y; (a pbgitive
number) signifies the importance of and pi the uncergajnty about
the variable xj. The actor chooses, for each i, the, precision
nj: i.e., he asks about the value of m; that satis'fi‘é'é

L3

mj -1 mij -\ N
(5.6.2) R P )
In particular, if nj = 1, no inquiry is ma(d}'ﬁbout xj. Thus we
have the situation described in the lasf\séntence of 5.4,1. By a
reasoning extending that of 5,5, oné cdn show that the precision
nj for the variable x; becomes more valuable as its uncertainty
pi and/or its imporranclbryylimapdageg in

5.7. The role of statistiadl dependence, It can be further
conjectured that, the larger the statisfical dependence between
X3 and x3, the sma{lex;\is the advantage of learning about both
over learning abodt‘enly one of them. In the example that fol-
lows, we drop thé\assumption of independent distribution of the
x's; and we co\risider only the case—5.4—where each variable
can be learngd either exactly or not at all. Let, as in (5.6.1)
(but wit‘q..y;% all equal)

O\ u = a(2xy + 2xy - a},
apd@ssume x; to be two-valued, with the following probability
»q:istribution:
X2
1

A\ 0
(5.7.1) 1 Piy  Pya

0 P21 Py

It the'determinant P11 P22 - P31 P13 is denoted by d, and the
marginal probabilities by py = pyg + P12 =1 - qj, pg = p11 + P21
=1 - qg, then the above mafrix of probabilities is equal to
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pppp+d PrU2- d
(5.7.2) .
Py Uy - d dq 22 +d

piq; measures the Muncertainty' about X (it has its maximum
for pi = 1/2, minimum for p; = 1or 0, d2 measures the sta-
tistical dependence between Xi and xg9.

Dencte the maximum expected payoff by A
Upp if no inquiry is made A
Uyy il inquiry is made on X and X ~ D
Uy if inquiry is made on X1 only “4":"'\

Ugy if inquiry is made on Xg only:"\a'

Then Ugg = mas.x Bu = [Bl(xy + Xg)]z = (p1 + p2}2:
ANY;

(5.7.3) RY4

Uy = Ema:?.x u= B{x + xz)z = Uppip 41 + pgqg + 2d .

W widbraulibrary org.in

N

To compute Uyg, write

max a.[—a + 2E{x | —i) = [E(x +Xglxy = 1)]2 =14 ;
a 1+ XX SV T 1+ %2171 1:

maxa[-a 2E( —D]—[E(x + Eplx =0)]2=u0
a + 2E(xq +xplx; = )] = | B2 ;

say. Then Uyg = “1}} + uyqq and therefore
O )

3.7.4 ¢/ _ . d

( ) % :..> Ul]. - UlO + P2 a3 plql *

f ingquiring about both vari-

7\
We see Qom (5.7.3) that the value O
11, is the larger the larger

ables, Compared with no inquiry at 2

the-dneertainty pjq; about each variable., We see from (5.7.4)
\2?_%" the advantage of inquiring about both variahles, compared

ith inquiring about one only is the larger the larger thoge un-

certainties and the smaller the statistical dependence (@?) ve-

tween the two variables. I am not going to subscribe to a secorfd
newspaper if it mainly repeats what the first paper says, of if it
always says the opposite! [As to the role of the algebraic value
of d in (5.7.3), and, hence, of positive VS. negative correlation,
this has probably to do with the concave nature of the assumed
pPayoff function u with respect to 2. But this is cnly a con-
jecture, ]
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6. CONCLUDING REMARK

The results obtained in cur various examples seem to agree
with common sense, but, I think, only with common sense re-
vealed by hindsight, except possibly for those "exact minds who
feel by a sort of instinct” who appeared in the quotation from
Laplace in Footnote 1 of this paper. I may remind the read~
er that the problems solved here surely belong to the simples\t
team problems that one can imagine. As the networks and«the
payoff functions become more complex, as statistica? dgpsndence
between observables is introduced, as non-additive costs are ad-
mitted, as the simple three-phase models are abandonéd in favor
of models permitting feedbacks, etc,, unarmed cgmmon sense
will become more and more powerless, and prédise logical
analysis more and more necessary. Even thdﬁg'h such analysis
will always have to use simplified models While reality includes
many "things that cannot be submitted t6’¢siculus, it gives the
surest hints that can guide us in our‘ju}xig‘ment + + « and teaches
us to avoid illusions that ofttimes ¢bnfuse us."

www.dbrauli brqr’y;of:g_ in
FQOTNOTES

1. Laplace adds: 'it makes us appreciate with exactitude that
which exact minds fe:IEby a sort of instinct without being able
ofttimes to give a ¥eason for it, . . . Even in the things that
cannot be submitted to calculus, it gives the surest hints that
can guide us\JdAOUr judgment . . . and teaches us to avoid the
illusions thit"ofttimes confuse us."

2. Note;(an ordering Gj on Sis said to be complete if it has the
following two properties: (a) if s, s', s are in & then s Gj 8'

and'st Gj " imply s Gj s" (transitivity); (b) if s and s' are in
~Sthen s Gi & or s' G s (completeness). If (a) but not (b} i8

satisfied, the ordering Gj is said to be partial.
3. See G, Debreu [4],

4. See [14], [10].

5. Bee [17], [10].

8. In an earlier paper a different definition of orders was given.
An order was defined as a message restricting the actions of
the subordinate to a certain subset of possible actions. The

Present definition resulted from discussions with Roy Radner
and Herbert Simoan,



ORGANIZATION AND INF ORMATION 219

7, See L, Hurwicz [8].

8, This is easily shown formally for the case when x takes dis-
crete values xj with probabilities pj (i=1,2,- - +} BY definition

max u(a,x;) 2 ula,xj} for all a,i.
a

Multiplying by p; (all non-negative) and gumming over i:

T p; max ula,x;) 2 TP ufa,x;) for all a
i a i

B max  u{a,x) 2 Eu(ax) for all a. N
Y ;

A

The last relation holds also when a on the right side takes the
value that maximizes Eu(a,x). This proves (3.1.1). (B;;iefly,
the average of maxima cannot be smaller than the maximum

average. A

9. A suggestion by R. Radner. O

o\

U

S 3
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CHAPTER XV

THE LOGICAL STRUCTURE
OF THE UTILITY CONCEPT

by
Herbert G. Bohnert
RAND CORPQRATION

28N

No concept can be regarded as clear unless the form of\ \
statement in which that concept is used to assert a sip;plé’,
singular proposition is completely determined. Singg\the form
of a singular sentence should not depend on ihe pagticular in-
dividual names appearing in it, it cannot be regdrded as deter-
mined unless it is possible, when the indivigi{{al ¢onstants in a
sample singular sentence are replaced b , Yariables, to specily
the class over which each variable is to"nange, In other words,
a determination of the singular fce torm of & concept in-
volves determination of thge natuii%ﬁ%iaggtﬁfég 5 &Mich the
concept is to be ascribed. N

This requirement may be.Jeit ‘aside as long as a concept
figures primarily in theorgtical discussions. Equations can be
studied formally as sogmas the quantities involved are charac-
terized with respect! téCtHeir values; and order postulates can be
laid down without fnquiring into the nature of the entities being
ordered. Howevery ‘ance the problem of empirical measurement
is raised, the £or'% of sentence in which the results of measure=
ment are ;qbé'éxpressed must be determined.

Althoigh/it may be obvious that both traditional and currenF
treatrpen'}\s of the utility concept are not entirely satisfactory 1n
t}‘i§~€e~§peCt, I should like to review their limitations more eX-
phiditly before going on to suggest & different approach.

In classical analyses, utility is treated as a real-valued func-
tion defined over points in n-space. The form of singv:ﬂar sen-
tences for the concept might then appear to be something like:
"The utility of x for entities 1,2,..., % in the amountf_-i )
¥1s Y9y 4 0., ¥y 18 equal to U atiles.” In other words utility 2p-
pears here as a quantitative relation between an indiwdu_al and n
magnitudes, or, equivalently, as a non-guantitative relation
{("being the utility function of") between an individual and a func.-
tion of n magnitudes. Now this sort of formulation rajses vari-

Ous questions,

221
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First, the magnitudes over which the quantity is defined are
{usually) "timeless' The individual involved, however, is time-
extended. But a magnitude cannot be unambiguously ascribed to
a system extended in space or time without some further con-
structions or conventions being made. Is static ulility to be
hased upon an empirical assumption that a dynamic utility stays
relatively constant during certain periods? Or is it to be a sta-
tistical construction from such a dynamic gquantity {e.g., 4 ti%ne—
average)? If an underlying dynamic utility is assumed, isjt to
be taken as continucusly characterizing the {n+1)-tuple(the in-
dividual and the n quantities) during sleep, for examule “or only
at times of decision? And what about these quantities? Are they
to be dated themselves, as stocks and flows in tife typical analy-
ses would be? And if so, are their "dates" tp(be' identical with
that on which the utility is ascribed to the iidividual? Until such
a static concept is unambiguously relateq te time-dependent con-
cepts we cannot be said to have a conce’pt ‘at all but only a partial
set of specifications for one, N

Time indeterminacy is only ong¢ g%pect of the more general
question, Another-wspdbtaisibesty orghe fact that the number of
dimensions, n, is left undetex&ihined in economic discussions.
Yet the dimensionality of tliig’ space over which any empirical
magnitude is defined is,a Fixed formal property of thati magni-
tude, Indeed, the intefpretation of the magnitude on each dimen-
sion must be fixed and unchanging if the concept is to have 2
fixed, clear meanfnp.

One reaction te this problem is to suppose that in principle
utility is tosbeldefined over a space of a very great number of
dimensiopgy.fost of which are ignored as uncritical in any given
problem“But is there any complete set of commodities or en-
viropmiental variables over which this ultimate utility can be
congeived as being defined? It seems doubtful, In any case,

_. mtil such a set is determined, the form of the singular sentence

{ YOr a utility so conceived is indeterminate., Thus all statements

concerning measurement must be regarded as ellipses for very
elaborate assertions whose form is unknown.

A further problem in connection with the conception of utility
as defined over a (commodity) space, is that it makes difficult
the intelligible measurement of money or any other single vari-
able. The very conception of such a space is based on the sup-
position that the utility at any point is not just the sum of sepa-
rate utilities for separate commodities,

Another reaction to the problem is put forward in what I shall
call the portability doctrine, According to this view, utility should
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not be regarded as defined independently of any problem or ex-
perimental situation. Rather, the detailed interpretations and
logical decisions concerning its form are to be made in the con-
text of a given problem. The concept is to be treated as a sort
of portable partial framework, carried from problem to problem,
to be filled out in structure and exact significance according to
the demands of the specific problem. This would render it unlike
any concept in the physical sciences, although its supporters
often compare the development of the utility concept to that of A
"emperature” and other physical magnitudes [4). (Quantities
such as temperature might be said to vary in meaning from,{y
axiom-system o axiom-system—e.g., from statistical mechan=
ics to thermadynamics—or from one mode of measurement to
another, but hardly from problem to problem.) In apy case,
measurements coald be carried out only for this specifically
interpreted "utility”, not for utility in general.\ So.the results
would have no direct consequence for the ge;ls\r.al theory of
utility,

A third approach to the probplem may~':jez\derived from the
traditional "satisfaction” interpretat;o’ of utility. In the clas-
sical analyses of consumer beha@i‘éﬁ,’g&ﬁﬂyqﬁﬁé’a‘i‘%ﬂ@ be in-
formally interpreted as a satisfa.éfcio'n caused by receiving the
specified amounts of the comnipdities. The form of singular
sentence for such a satisfa¢tion concept might be: "The satis-
faction caused in x at timé t by receiving commodities
1,2,,,.,n, at the m\ge’s’n, ¥9, « ¢ v s ¥ (measured at time t)
equals s degrees.'$\This has the same gort of difficulties as the
previously consickéféd forms. If s is justthe amount of satis=
faction due to h;gse commodities, is total satisfaction due to
other commedities besides? and is s tobe added or otherwise
combined. with other sAtisfactions to arrive ata total satisfac-
tion? These and other questions are cbviated, however, if we take
satigtaetion as a state variable of the individual concerned in the
sgme-way that temperature is a state variable of a system or
POttt within a system. No matter what temperature causally de-
pends on invarious circumstances, the form of its singular sen-
tence is: ""T'he temperature of system X (or point x) at time £ 18
equal to T degrees,” It is not: t'The temperature of x at time t
due to, . , . equals T degrees” (where the dots are replaced by
any explicitly given list of physical magnitudes). If we choose to
use a state variable, "pleasure"would be a better word than "gatis-
faction™ since the latter term carries 2 suggested reference to
external cause. The type-sentence for pleasure would then be:
"The pleasure of x at time t equals P degrees." We would then
have the empirical problem of determining what pleasure depends
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on, rather than the pseudo-logical one of deciding what entities
utility is to be ascribed to. However difficult such a task might
appear, it would seem a more honest and healthy relocation of
the problem. Science is better equipped to unravel intricate
causal connections with the help of clear concepts than to inter-
pret measurements of ill-defined quantities.

30 much for the traditional treatment. Turning now to the
von Neumann-Morgenstern approach we see that their congept
of utility is defined over the class of all probability combihd=
tions of events in a class of mutually exclusive events, \conceived
as capable of taking place in the immediate future 0{15 given in-
dividual x at a time t, Provisionally, this seems.lear enough
from the standpoint of singular sentence struq.ttxf‘e, ite form
seems to be something like the following: /The utility of E for
X at time t equals u utiles." This conta$isvno dots nor indeter-
minate number n, All we have to ascertajn is the nature of the
entities over which the variable E is#d range. Are probability
combinations of events also events? Before looking into this
question let us consider only the ériginal set of alternative
events. The word, leyenisdsdsdeyl dpgtmo distinet ways which it
is essential to distinguish., Rer this purpose I shall make use of
Rudolf Carnap's term "prdposition™ [1] for the sort of entity
designated by a complete sentence. More suggestive synonyms
might be “situation" g% Vstate~-of-affairs™. That a certain coin,
a, was {ossed at Q‘ar?ain moment, ty, is a proposition, true or
false. The class%f tosses with that coin, on the other hand, is
not a proposifion! The class determines a irequency, but not a
truth valueA\It'may be regarded as a propositional function of
i.;ime in ;hg\éense that it is designated by an expression {'coin 2
is tosﬁg‘“at t") which determines a proposition, true or false,
for gieh specification of the time variable. Those probabilists
\&fl\lpfadhere to a relative frequency interpretation of probability

P use the term "event" in the sense of propositional function. Von
Neumamn and Morgenstern explicitly adupt the relative frequency
view, Yet the events in the basic class are conceived as related
to a 'standardized moment. . . in the immediate future"”. This
Suggests that preference is basically conceived as holding be-
tween propositions rather than propositional functions, This is
borne out by the fact that the limitation is applied in order to
avoid "the problems of preferences between events in different
periods in the future™. 1t is, of course, possible to rank proposi
tional functions at each moment according to preferences among
the propositions obtained by specifying that moment.
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However, this question hecomes more serious when we con-
sider what is involved in expressing & preference between two
probability combinations of the members of the basic set, Sup-
puse one cembination consists of basic element A with proba-
bility p and basic element B with probability 1 - p. If the
probability involved is relative frequency probability, A and B
can obviously not be propositions. Now suppose they are propo-
sitional functions. The probability of A must be the relative
frequency of A with respect to some other propositional func- A
tion C {reference class)., (For simplicity Iignore the problem
of relative frequency limits in infinite classes.) Presumably
then, it is this event C that is being offered as an alterngtive
to the events in the basic set rather than a probability gombina-
tion conceived in some more abstract sense. This sgemns horne
out by the fact that in discussion of actual casessWitere a person
is presented with a probability combination ihvelving event A he
is informed that something like a roulette whael will be spun i
he chooses the combination and that A(tﬂ’,will be made true for
a specified tq if the ball rests in a cert:ain region of the wheel.
For the subject to make a meaningiuhéhoioe he must believe that
the experimenter has the power“é‘ﬁﬁfﬂﬁﬁ?ﬁiﬁi’f“’tﬁﬁ-@lfglﬂnhis part of
the bargain, That is, for a perdon to have 4 probability combina-
tion pA + (1 - p)B as a genuije alternative to his basic set of
mutually exclusive evenyd tpropositional functions) there musF
be possible for him thg”;hternative of another event C exclusive
from each of the ot ‘1\5 For instance, ¢ may be the event of
accepting an offermade by a certain persomn, accompanieg by a
certain promigé?; Further, C must be capable of occurring at
the standard.future time; it must be such than an occurrence of
C is always{followed by nceurrence of A or by occurrence of
B, and Qﬁaily, ¢ must be such that the relative frequency of
joint g¢elrrences of A and C with respect to occurrences of C
is 8 This requirement, while possibly making clear the logical
‘Status of probability combinations of events as events the_msglves
(dropositional functions of time), seems 10 limit the application
of the Neumann-Morgenstern approach tn such matters as con-
sumer tastes. Alternatives arising in real life are seldpm con=
trollable by the outcome of a pre-set random device; this makes
it misleading, if not meaningless, to consider choices between
probability combinations of them, .

The reason von Neumann and Morgenstern give for a_doptmg
the relative frequency approach is that it yields a magnitude
rather than an ordering. However this does not appear to be
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exclusively a feature of the relative frequency approach since
the work of Carnap [2], (also see [3]).

Although Carnap's work has not yet provided a very general
theory of logical probability, the development of more general
theories along the same lines seems inevitabie, and it may be
well to investigate its implications for the utility concept.

First a few words about the concept of logical probability,
Logical probability is a straightforward gencralization of thes
basic concept of logical implication, If a scentence e logically
implies a sentence h, this means that in virtue alone of thé
formal meanings of the sentences any possible world {nywhich ¢
is true must be such that h also is true. In othermdirds, the
range of possible worlds in which e would be tr:uefis z subset of
the range of possible world in which h would b@,’true. The con-
cept of "possible world" can be made precisd$6r the purposes of
the logic of a given axiom system in terms bf certain strongest
sentences (state-descriptions} formulabléin the terms of the
system. It seems then a natural andjrievitable step to develop
a theory covering the relation that Rolds between sentences
whose ranges Ove%m,&lﬂta&?fﬁfé?%:’ékﬁ,ﬁimple containment cor-
responding to logical implicatioh, Here we would have something
weaker than logical implication which we might call support or
confirmation or logical probébility. Il a reasonable measure of
range is found, this thedry can become guantitative. Carnap has
found such a meas r{‘iér languages (axiom systems) involving 2
denumerable numbe®r of individual terms and a finite number Of
bredicates of appdegree. If m(h) is such a measure of range
for the sentepép E and h'e is the conjunction of the sentences
h and e,:tf;IB}I we can take E—éﬁ;}—e)) as the logical probability of
the hypgothesis h on the evidence e. As might be expected this
quantity takes the value 1 when e logically implies h. This

Latio bears an obvious resemblance to relative frequency but

\Jiere there is no question of the "favorable event' h having 2
frequency, Being a sentence, it can only be true or false. The
multiplicity needed for arriving at a meaningful ratio comes
from the ensemble of possible world states, I use the term "en-
semble" here deliberately to suggest to those familiar with the
use of this term in statistical mechanics that it may be logical
Probability rather than relative frequency probability which 18
used implicitly in statistical mechanics,

Using the concept of logical probabiltiy, it seems possible t0
sketch out the form of a utility concept which takes propositions
as its principal arguments rather than either indeterminate
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numbers of commodities or events in the relative frequentist's
sense, and which Is potential® %ider in its field of application
than the latter. Since logical probability is in no sense a sub-
jective probabilily, the concept first defined will be normative,

a raticnal utility suitable for the definition of rational preference
and rational decision. After this, the possibility of using a simi-
lar schema for a non-normative empirical utility will be dis-
cussed,

Although it is not essential to this approach, Ishall couch pun
discussion in hedonistic terms for three reasocns, First, bes
cause pleasure is a state variable having a clear logical foruady
it can serve as a model of form for alternative formulations,
Secondly it seems of interest to see that the diﬁicult'}eso noted
earlier in connection with the attempt to base utilitphon satisfac-
tion car be avoided by use of probabilistic congiderdtions. Third-
ly, this procedure may suggest the possibility that some similar
sort of psychological interpretation may offerrways of arriving at
empirical utility estimates in addition tp’\bbserVing actual deci-
sional behavior, though without making\the choice-potential ap-
proach more difficult or less valuables )

let P(x,t) be the pleasure or\ﬁ"ﬁ\é'cfgfﬁ?:uﬂ}i‘f@rbpﬂg-ﬂt time t.
For any x this determines a tifrie series which we may picture
oscillating irregularly ahqut:ai'normal position from birth to

death, Let ¢ .
“ +8
{Q‘c,.f,s) =J Pix,THT.
\ t

tive happiness of X during s
{ x at time t will not know
s, but he may be able o

H{x{t,S) may healled the prospec
beginning atsh.Of course, hedonis

the ValuﬁzﬂjH(x,t,s) for any positive
form estimiates of it and he will hope that it is as large as pos-
sibleg

~ /Kith logical probability we can form a concept_ corresponding
to\iathematical expectation of & magnitude 2 which we may call
e estimate of z with respect to given evidence e. Let E(Z,W_,e)
be the estimate of magnitude z foT the argument w On the basis
of the proposition e. (I shall use "e' as variable gver propo-
sitions rather than over sentences in contradistinction to Carnap.
With the development of modal logic this becomes a perfe(?tly
feasible alteration conducive to simplicity of discussion withouat
affecting the fundamental idea.)

Let e(x,t) be a proposition T€P
x has accumulated by time t (the CO
the fiction that x has total recall).
following definition,

resenting the tatal experience
ncept being defined makes
We may now lay down the
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The proximate rational utility of proposition p for x at t
with respect to time-span s equals u utiles if and only if p is
lagically compatible with the total experience of x at t and the
estimate of his prospective happiness during s beginning at {
on the basis of p together with his total experience al t equals u,

Using the symbols already defined, together with the sign O
from modal logic for logical possibility (see p. 175, [1]) this can
be written out:

™\
U(P,X,t,S) =u = dfO(p'e{xst))'(E{H,X,t,S,P'e(K,t}) _“u)

L X
2N\

where the dot denotes conjunction of propositions. ™\
Ahsolute utility could be defined with respect toioté.l pro=
spective happiness: 7\
&
U(paxst) =di U(p,X,t,w}. O

Proximate utility seems a more usefyl\¢pncept, however,
since absolute utility might vary too sl'gthly between proposi-
tions to be of help in practical decisiGns.

The above formulation does not purpert to be a definition of
utility but rather a“skettraldane¥sife form of such defini-
tion, which would confer a cleis iogical structure on the utility
concept, The essential poiffis the employment of propositions
as the entities to which gtility is attributed. This permits utility
to be attributed to a situation consisting just of receipt of d
dollars by x; at t @it’hout raising questions of complementarity
or the need to spec}’ﬁy a total world future of which this was 2
part; for the definition requires that complementarities, possible
world futureg)\and the like, in so far as x can determine them
onh the bas‘i§\6f e(x,t), are taken into account in the estimation.

Propgsitions can be as simple or complex as we please and
hence{provide an extremely flexible base for theory or measure-
mexnt¥once they become well-defined through specification of the

< ~détails of the language system employed). Indeed, the effects are
about what could be hoped for from the portability docirine with
the difference that we would have here, at least potentially, 2
single, completely interpreted concept. Furthermore, instead
of being restricted to sets of mutually exclusive acts or strate-
gies we could attach a utility to any propositions not contra-
dicted by our experience, We could then decide our preferences
among them according to this utility regardless of whether they
are within our control or whether they are mutually exclusive.
For example, p and p-q are not mutually exclusive but it might
be rational to prefer p to p.q if q is unpleasant, simply becausé
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p does not entail p-d. It would seem essential to rational con-
duct to be able to evaluate situations directly without regard to
whether they are possible consequences of our actions. And it
seems not inconsistent with normal experience to feel prefer-
ences even among past events or among general laws as long as
our own experience does not directly contradict them. Cn the
other hand it should be noted that the suggested definition con-
fers equal utility for x on all propositions known by x to be
true, Iam not sure how this corresponds to common feeling on,
the matter but it could not affect any actual decision behavior.

Using symbols already introduced, rational preference (X,
rationally prefers proposition p to proposition g at time~b
could thus be defined as follows: S\

P(x,p,q,t) =gt Qlpreixt)) - Qlare(x,H)- (Ulp,x,t) g:ﬂ(q,x,t) )

In fact the measure of this preference could beitaken to be the
difference of the utilities, RN

A definition of rational decision amongglt;bui'ses of action could
be based on the above definition if one ¢tuld define some such
concept as 'p is a possible cou CAction for x at t" where
"possible' is meant in the ordirfff;?%%taﬁihﬁm& fodical, sense,
It should be noted that Carnap'sfermulation of Bernoulli's ruleof
rational decision, which rests upon an undefined concept of utility,
has been made the basis for the present definition-schema for
utility itself, K

The fact that ratiodal Utility is here sketched as defined di-
rectly, with rationhl preference as a derivative concept, does
not mean that measdrements of empirical utility might not rest
heavily on obsgbved preferences__'_mheless, I would be in-
clined to defifie empirical utility in basically the a7 way. In-
stead of Using strict logical probability based on a Carnap
measure, function though, I would suppose that the individual's
subjeetive probability could be represented by a measure func-
Honwarying in certain ways from the norm; and instead of taking
hig' total experience, I would take that part of it which he gctuglly
brings to bear in making his choice, Using such 2 definition, in
fact, one might be able to reason packward {under certain con-
trolled conditions) from observed choices to partial determina-
tion of a man's information, his proximate gbjectives, 0T the
peculiarities of his subjective probability measure. On th‘e other
hand, one would not be limited to observation of overt choices.
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CHAPTER XVI

TENDENCIES TOWARD GROUP COMPARABILITY

IN COMPETITIVE BARGAINING'
by
Paul J. Hoffman, Leon Festinger, Douglas H. Lawrence
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e

N\

N,

Introduction N

The present study is concerned with some of the;\gocio-
psychologica] factors that determine behaviorJu i situation
where some ability is being revealed oT megsured. In such 2
situation, in order to evaluate their abilit§, persons frequently
tend to compare their own performan ‘with the performance of
others whom they accept as com\'ﬁﬁ?ﬁb 4 ihEmREetyBen As 2
consequence, the individual’s benawior is determined more by
his performance relative to thosé:'others than by the absolute
level of his performance. If the situation in which the particular
ability is measured is a a*f'gaining gituation where coalitions
can form, it is possible(fd'predict both the type and strength of
the coaliiions that fo}\l}r,"and the relative stability of these when
the composition of{the group and the importance of the task for
the participantg, §& varied,

A motivatigndl analysis of this typ
only for gaeial psychological theory but also _
games [\é\-“ This is seen most clearly when «pational” bargain-
ing behavior in the typical game situation is analyzed under the
assumption that the only motivation present is a tendency on the

arfof each player to maximize the total number of points ‘he
obtains. Imagine a game involving three players where‘a’flxed
amount of money, points, or some commodity is to be divided

e has implications, not
for the theory of

*This study was conducted under contract N onr 225 (01) between
the Office of Naval Research and gtanford University, and in co-
Operation with the Laboratory foT Research in Social Relz.itlons
of the University of Minnesota. The theoretical formulations on
Wwhich the study is based were developed by Dr. Leon Festinger,
and he will extend them in a forthcoming article.

231
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among them. The rules of the game are such thai no ane indi-
vidual can obtain the total amount by his own efforts. If any two
of them agree to cooperate they can share the amount on any
basis satisfactory to the two of them.

Procedure. In addition the following conditions are assumed:
(1) that all individuals are equally and singly motivated to ob-
tain as large a share of the points as possible, and {2} that they
are all equal in bargaining skill. Two things should be noted™
about this game. First of all, while it is mandatory for fwo'of
the three players to form a coalition in order to obtain\'p‘oihts,
a given player has no rational basis for selecting hetwéen the
other two members in attempting to form the initidMpartner-
ship. Hence, in the long run, each of the three,$ossible coali-
tions in this group will be formed equally oftens The second
paint to note is that there is no logical terthinition to the bar-
gaining process. Each player can break<ip’any coalition formed
In opposition to him by offering one playér more points than he
is getting from his present coalition \Hence an endless process
of bargaining would, devglopand e maiptained.

This result, however, is conttiry to everyday experience. It
is to he expected that coalitipﬁjs’ will form between particular
pairs of players more freqiéntly than between others and that
these will be of a relatix®ly stable and permanent nature. The
difference between thg}rational” prediction illustrated above
and commoen psye ngical expeciation centers about the nature
and variety of th mbtivations operating in the bargaining situa-
tion. N

When the (39¥6 motivation present is the desire to obtaina
maximum fmber of points and when the players have equal
bargainihg skill, all coalitions between members are equivalent
and Qegu\a ly likely to occur. Predictable and stable coalitions
C?Diﬂl‘m, however, when there is a variety of motives operating
ahd their strengths are unequally distributed among the players.
Then even though two players make identical offers to a third in
terms of the absolute number of points involved, these offers
are not equivalent in value for that player in terms of the other
satisfactions they can provide. This results in the possibility
that a particular individual may find himself in an advantageous
position relative to the others. His offers may carry both the
potentiality of points and the potentiality of other satisfactions.
To the extent that a second individual requires both of these
types of satisfaction, there is a high probability that he will
accept offers from the first player. Moreover, the player left
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out of such a coalition will be relatively impotent in his attempts
to break it up as long as the desire for points is subordinate to
the other motivations of the coalition members. From this

point of view, it is obvious that coalitions may in fact become
predictable and stable.

The hypotheses underlying the present experiment are first,
that these additional motivations in a bargaining situation arise
in part from each individual’s concern about his comparability
to other members of the group on the ability that is shown in, A\
the bargaining, This results in pressures to achieve unifor mity
in the group. In our culture, at least, there are also moiivazh
tions to strive to be better than others which operate sifiul-
tanecusly with the pressures toward uniformity. The.gontrast
between these types of motivation and the motivation to’obtain a
maximum share of the points is seen most clearly, In situations
where the points involved are ratings, prestigé ebjects or other
symbolic representations of relative statughy The individual’s
concern about them arises not because @(their abseolute or in~
trinsic value, but because in this actiyif[y they are indicative of
his status relative to others. Ina competitive society, such

concern ahout the status signiﬁ&%ﬁé‘éﬂ’ﬁﬁi@ﬂiﬁal‘pgbﬁggnsymbois

fends to operate even where mofey or other commodities of

direct utilitarian value are inyolved.

The influence of the géieern about re
formation of coalitiong"ean be shown by
ously described game. Assume that one of the individuals ob-
tains an early inithal advantage of a number of points whxl‘e the
others at this\stdge have few or none. These points funct%on as
symbols indicating to the others that this person is supeljmr to
the other #wb in that activity. The resultisan increase in the
motivatidnof the other two mdividuals of the group to draw
closg '!;b him, Consequently they will be strongly motivated tp
fopia coalition against him insofar as this aids in overcoming
‘Nig*lead. Furthermore, they will resist any aftempt on his part
%6 disrupt this coalition even though by accepting h?s offers
either one of them might gain more points than he is able to ob-
tain by remaining in the coalition. This happens because a con-
flict has developed between their qesire to acquire the maximum
number of points possible, and their desire to reduce the dis-
crepancy between themselves and others. The refusal of offers
rom & seveon aith fhe large nitial advantage i POITS indicates
that the conflict has been resolved it favor of the desire to re-
duce the discrepancy.

This analysis is based on t

lative status on the
referring to the previ-

he hypothesis that a major



234 DECISION PROCESSES

motivation of each individual is to compare himself with and to
draw close {o or surpass the others in the group. Ths relerence
individuals with whom each compares himself, however, are not
selected indiscriminately. The amateur golfer does not come-
pare himself with the professional, nor is the occaszional bridge
player concerned with his status relative to the expert. The
conditions determining which individuals are selected as a ref-
erence group are not clearly defined as yet, but in generalai N
individual is concerned about his status relative to othersawhom
he considers of approximately equal ability. He tends t{j’eitlude
from his comparisons individuals who appear definitelysuperior
or inferior to him in this activity. This is identica™p the
process of “rejection” when pressures toward udiformity arise
concerning opinions. There the individual doe,s*:mjt evaluate his
opinions by eomparison with others who areMod divergent.
Similarly, individuals do not evaluate the;.R\abi]ities by compari-
son with those who are too divergent [1].¢
Conditions in which all members i@ group regard them-

selves as comparable are known ag “peer” conditions. Condi-
tions in which one opwmoderindiividialemre regarded by the
others as non-comparable, i.e. as definitely superior or in-
ferior, are known as “non-peéer” conditions. In terms of the
previous analysis, it is efpected that in peer conditions pre-
dictable and stable cog'}i}ions will form in opposition to the indi-
vidual who has an ifdtial advantage. In non-peer conditions,
however, this tendency will be reduced because the pther mem-
bers of the growp are motivated to surpass each other and are
less concernec:ﬁvith the status of the non-comparable individual.
Even thcnqg,}}}he tendency to compete with the non-comparable
individi:ml.is reduced, it does not disappear because the condi-
tion pfjn}:n—comparability is relative and continuocus, rather than
all on'hone,

¢\“Phere is a second important determinant of decisions involv-
ipg the formation of coalitions. It is obvious that the desire to
achieve and maintain relative status will vary depending upcn
W‘Jvhether or not the individual regards his status on that task as
Important, The golfer or bridge player will be concerned about
status differentials which develop in the play of these games but
not on a wide variety of others. Similarly, performance on an
activity which requires the use of intellectual abilities will re=
sult in a motivation to achieve status in direct proportion to the
degree to which this type of activity is considered important by
the individuals involved, Increasing the importance of a task in
effect increases the individual’s concern about any status



TENDENCIES IN COMPETITIVE BARGAINING 235

differences that may develop with the result that he becomes
even more motivated to equal or surpass the others. Conse-
quently, he becomes even less willing to cooperate with anyone
having ar initial advantage. Thus under conditions of high task
importance the ccalitions become highly stable, In contrast,
conditions of low task importance may result in a situation in
which incidental motivations are as strong as the concern about
relative status. In this case the stability of the coalitions is
reduced. N\

In summary, it is postulated that an important metivaiion in
a bargaining situation is the individual’s concern ahout hig'gta-
tus in the activity relative to other members of the groypyand
his desire tc equal or surpass them. The accumulation -of
points is significant for him because these represgnbthe degree
of comparability among the participating individials. Conse-
quenily, predictable and stable coalitions in appesition to an in-
dividual having an initial advantage will ocour more frequently
when that individual is a peer member df the group than when
he is a non-peer member. Similarly,Nncreases in the vaiue
placed on the points as a result of making the task important to
the individual increases his conbiR Gey ot gLty and in-
directly his tendency to formestable coalitions In opposition 10
an individual who obtains aninitial advantage. These predictions
are tested by the follow‘{{'g experiment.

(&>
SUBIECTS AND PROCEDURE

Twenty-e'{éﬁt groups of subjects participated in the original
experimentWhich was performed at Stanford University. The
entire expériment was then replicated with twenty-eight groups
at the €ity College of San Francisco. Subjects were under-
grafuates, drawn from the introductory psychology courses.
{ ke two groups were alike with respect to 2£¢, put the Stanford
gubjects were of a higher socio-economic level and prgbably of
higher average intelligence pecause of the gifferences in en-
trance requirements at the two schools, Stanford s_ub3ects also
appeared to be somewhat more mature and less naive t.han the
San Francisco students, most of whom had had no previous €x-
perience as subjecis in psychological experiments. Only male
students were used. ' l
The twenty-eight groups in each replicatmq were randox_n.y .
but equally distributed between the four expenme.ntal conditions:
(1) high task importance and peer relations, (2) high task
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importance and non-peer relations, (3) low task importance and
peer relations, and (4) low task importance and non-peer rela-
tions, Of the three individuals in each group, twa were sub-
jects and the third was a paid-participant trained beforehand in
the role he was to play. Two paid-participants were selected
irom Stanford for use in the Stanford experiment, and three
from San Francisco City College for participation with those,
groups., These were male gentors who were unknown to the
subjects. When the two subjects and the paid-participant®ar-
rived for the experiment, a check was made to see thad (He/two
subjects had no more than a passing acquaintance witheach
other and that neither knew the paid-participant. {n“tases where
this was not true, the group was discarded. Thehree group
members were seated around a table with thepositions clearly
labeled as A, B, and C. The paid-participant*invariably was
seated at A, \\

Each group was informed that the plirpose of the experiment
was to collect standardization and yaldation data on a new type
intelligence test congisting of three'parts. Subjects were told
that the first part of the destripsagirogaim to the usual type of
paper and pencil intelligenceltest, the second measured the
ability to interact with othéms, and the third was designed to
measure insight into one’® own behavior and the behavior of
others. In actuality ,th'a\first was a paper and pencil intelligence
test included to lend'\credibility to the situation, the second was
the bargaining situation or test proper, and the third was a
Guestionnaire {8;provide independent evidence that the experi-
mental manjpations had changed the individuals’ attifudes and
perceptipns.” The low versus high task importance and the peer

VerSuSQieri-peer conditions were established in the following
ways

AN

¢ \ “1. Task importance. The importance of the task to the sub-
jects was manipulated in two ways: (1) by the instructions given
Fhem concerning the validity of the test purported to be measur-
ing intelligence, and (2) by the content of the paper and pencil
Fest. In the high importance groups, the instructions given themn
just prior to be ginning the experiment were as follows:

We have asked you to come here today to take a new
intelligence test which has recently been devised and
which has shown itself to be highly superior to the usual
kind of intelligence test. We have scheduled three of you
together because, although some parts of the test are
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taken individually, other parts of the test require inter-
action among three persons. The test is separated into
a number of parts and we will explain each part to you
when we come to it

Let me explain to you why we are asking you to take
this test. Recent research in psychology bas produced
new knowledge about intelligence and intelligent behavior
in people which has enabled psychologists to construct
this new test. It has been tried out with many different . O\
kinds of people and in every case has been shown to be
greatly superior and more valid in measuring the inteilis
gence of individuals than the older type test. Neec}lqés to
say, when such an important development occurgsit is
extremely valuable to accumulate as much dat@ising the
test as possible. As the test has not yet beemused with
people on the West Coast, we are especially interested in
the data we will collect here. N

After we measure your LQ. withithis test we will com-
pare it with other records we cgm get on you and with

scores you have made on the alder kinds of tests. There

will be some of you for whqﬁ%‘fﬁé’dbﬁ%ﬂiﬂ?ﬁeﬁﬂfﬁﬁe“t
records. If that turns outto be the case We may have to
ask you to take some other tests sometime within the

next month. The regults sc far with this new test indicate
that now, for perhaps the first time, we can really zpeas-
ure how intelligent a person is with an extremely high de-
gree of accuracy. We shall of course pe glad to jnform
each of yeu/about your 1.Q. after we have scored the test.

This eg‘r}ﬁﬁasis on the validity of the test was underscc?red by

the contept of the items given the high importance groups during
the pe‘n\cil and paper part of the experiment. The p}*inted booklet
givel these groups contained 24 synonym-antonym items arid Y
~Jerbal analogy items drawn from the Terman C.oncept Mas er-i!1

test, a section from the paragraph comprehengwn section of the
Ohijo State Psychological Examination, and 10 ?tems. from the
Minnesota Paper Form Board. ‘A ten minute time 1imit was 1m-
bosed on this test.

The instructions for the low important
to belittle the validity of the test. After
paragraph as used for the high importance Erous
tions were as follows:

e groups were designed
e same intreductory
the instruc-

you about why we are

L i things t0
et me explain some g gist who

asking you to take this test. The PSYChOIO
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published the test claimed that it was useful in measuring
intelligence, Other pecpile, trying the test out, have dis-
puted this claim and have shown by their results thai it
has nothing to do with intelligence. In fact their results
gseem to show that it has nothing to do with anything, We
have decided in the department here to do some very
careful research to settle once and for all whether or not
the test is any good. We have already given the fest to N\
large numbers of people, and, comparing their scores/an
this test with scores on other tests, with grades, anq'w?rith
many other measures, we are quite convinced that the
present test which you will take is pretty meaninpless,
Nevertheless we want more data so that whep’@e publish
our results there will be abseluteiy no quagtion about it.

This lack of validity was underscored byjthe content of the
printed booklet given the low importan e'grbups during the
pencil and paper part of the test. The Whprovised items were
of the following types: (a) general information of an extremely
low difficulty level, (b) ;a%%ﬁl&ﬁ%ygpgma_lue judgments on
moralistic questions, ﬁ:) ltemsngeduiring judgments of occupa-
tion from facial expression, (d) items requiring judgments of
emotion from facial expression, and (e} jokes to be rated in
terms of their humor,

2. Peer versusgh)}-peer. The peer condition, in which each
subject was to régdrd the other subject and the paid-participant
as comparable te himself in intellectual ability, was established
in part by ifistructions and in part by the behavior of the paid-
participﬁr\@;‘ These instructions were given just after the com-
pletion‘ef*the pencil and paper test and just prior to the bargain-
ing situation. For the peer condition they were as follows:

N\
™\ Before we start the next part of the test, I would like

you to know some of the reasons for s¢heduling you par-

ticular three persons together in the same group. This

next part of the test requires that in each of our groups

the three persons should be approximately equal in intel-

ligence and mentai ability insofar as this can be roughly

determined in advance. We consequently have taken the
liberty of looking up your grades, your various achieve-
ment and aptitude test results, and as much else as we

could get about you. We are reasonably certain that you

three are very close together in intelligence as measured
by those tests.
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In thiz uext part of the test you will see why it is nec-
essary to have the three of you matched so ciosely in in-
telligence. The next part requires that each of you deal
with the cther members in the group and consequently it
is necessary that all three of you be as equal in intelli-
gence as we could manage.

The paid-participant emphasized his equality with the others
by pacing himself during the pencil and paper test at the same
rate as the two subjects in the group. N\

In the non-peer groups, where the two subjects were tore~
eard the paid-participant as definitely superior to thems@lves
in intellectual ability and therefore as non-comparable,sthe in-
structions were as follows: N

Before we actually start taking the second part of the
iest, I would like you to know come of the\reasons for
scheduling you particular three persol {pgether in the
same group. We wanted to be sure }Q’at in each of oar
groups that take this test, there ¥asg iat least orllle pex;)saon
of very superior intelligence, Nog one Of you here 5
taker an iIl:tensive batte%-y of%ﬁ?@?“ﬂb‘?’iﬁ%ﬁég:ﬁarter,
and we asked specifically that he sign up for this hour.
The person in this group-who took this intensive battery
of tests earlier is the(one of extremely superior intelli-
gence, }

In this part df¥he test, part «p”, you will see the rea~
son we were so,careful ta be sure that there was at least
one person {i,the group of extremely high intelligencé.
The next ért of the test involves dealing with otherst in
the greup and in the way the test is standardized, it is
nec 'a'ry that such discrepancies in intelligence among
you‘exist.

o LM‘; neither of the two subjects in the group had taken an in-
\ténsive battery of tests, it was assumed that each would conclude
that either the other subject or the paid-participant ml:lSt be the
one of extremely superior jntelligence. This speculation was
then directed at the paid-participant as the result of his subse-

quent behavior. During the paper and pencil tgst,_ he worked
through the booklet easily and quickly, furning it in well before
the expiration of the time limit.
Following these instructions, the next part of the test was the
bargaining situation. Each of the three members of a group was
given a set of triangular pieces cut out of masonite, the sets
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differing from each other only in c¢olor, 13y assembling these
pieces correctly it was possible for each member of the group
to form an individual square requiring six of the seven pieces
provided him. The seventh piece was a large right-angled
isosceles triangle. Any combination of two players could form
a “group” square by combining their large triangles, This
group square had a larger area than did the individual square.

The bargaining was governed by a set of rules read to th€™\
subjects in advance of the trials. These rules emphasized that
the objective of the players was to earn points, gince ttre'sé‘
points were to be added to the scores on the paper %nd\pen(‘,il
test to determine the 1.Q. There were to be a seyiey vf five
trials, each of four minute duration, and on eacl)ef which it was
possible to earn as many as eight points. Theé,e“could be earned
in one of two ways. If a person assembled“\Mig”individual square
and no other squares were formed on that\{rial, the square was
worth eight points. If two persons combided pieces to forma
group square, this square was also wgﬁth eight points, provided
that the two partners agreed on how.they would divide these
eight points between thdmrselbesitylirgin permissible for either
of the two persons in an agredment of this sort to break it at
any time during the trial and.t() enter into a new agreement with
the third person in the g;rouf). In the event that more than one
Square was formed in.adgiven trial, only the largest square
would win. In cas Qho’ squares of the same size were formed,
o one would getyany points, There was one exception to these
rules. If any pexson succeeded in forming the individual square
on the first frdal, he automatically won that trial and in addition
received abonus of twelve points which he could divide among
the thre€ blayers in any way he wished.

These rules achieved the following results. On the first trial
Wl}i!é;the situation was still somewhat unstructured for the sub-

,je?ts;, each of them attempted to form an individual square be-

cause of the bonus of twelve points offered., The problem was
So difficult, however, that only the paid-participant was able to
do it. He always decided to keep the points for himself, thereby
obtaining an initial lead of 20 points over the other two mem-
bers. Because of his manipulation of the pieces, it was always
clear to the other two subjects by the end of the first trial how
they should go about constructing their individual squares. But
Since the assembly of an individual square by either of the re-
fnaining group members would result in a tie, with no points
awarded, this solution became functionally useless for the reé-
maining four trials. The only possibility remaining was for tw0
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players to form a group squdre from the large isosceles tri-
angles. The paid-pariicipant emphasized this point at the be-
ginning of the sacond trial by first forming such a square with
individual B and then with C as though he were just exploring
the possibilities in ihe situation. AsS this group square was ob-
viously larger than the individual square, it would always win
the points when formed.

The bargaining behavior of the paid-participant during the
second through the fifth trial was predetermined. At the be-
ginning of the trial he offered to make the group square with B
and to give him four of the eight points. From this point orrhis
behavior was governed by the following rules: N\

1, f B said “yes”, A rested until gomething else lg&i}pened.

If B said “no” A waited for a moment until sgthe agree-
ment between B and C had been reached, ‘ )

9.1 B and C did not reach an agreement, A Jffered B five
points. If the offer was refused, he pi@ei'ed six. If this
wag refused, he offered seven. After-any acceptance, he
rested until something else occuf;red. I ine offer of seven
was refused, he began direse@é‘d%ﬁfﬁfﬁbﬁ%%g}_gt_l}g same
sequence. N

3. It the person left out madevA an offer, A accepted it if it
gave him more points,“He did not take the initiative as
long as he was in ~goalition.

4. If the BC coalitioh%‘ormed on an even split, A proceeded
as in 2, N\

5. If the BC cdalition formed on an
offer of §4dr to that player who was getting the least. i
the answer was “yes”, he rested, I “no”, he proceeded
as.if"@-continuing to direct his offers to the same person
\}?—Q‘l"an offer was accepted Or until an offer of seven

Apgints was refused, In this latter case he began directing

::\.' his offers to the other coalition member.,

v/ The purpose of these rules was in part to make the bargain-
ing behavior of the paid-participant appear natural, but at the
same time to ensure that when forced he would always offer up
to seven points. In this way the strength of the coalitions
against him could be measured. AS each offer was made, it
was recorded sequentially by the experimenter in such a man-
ner as to indicate the size of the offer, by whom it was made,
toward whom it was directed, and whether it was accepted,
ignored, or rejected, In the Stanford experiment, the subjects
were given a warning 30 seconds pefore the end of each trial.

neven split, A made an

N
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This was eliminated in the San Franeisco replicaiion since its
effect was to materially reduce the amount of biddiny within the
period prior to the warning.

RESULTS

The results of this experiment are described under threes\,
headings. First the data from the questionnaire are analyzed
to determine the extent to which differences in task importance
and in peer relations were actually established betwe€n the
various groups. Following this, the results bearipgion the
choice behavior during the last four trials of ba rgdining are
presented under two headings. The first of these’covers termi-
nal coalitions, i.e., the agreements which existed at the end of
a trial and thereby determined the distribution of points. The
second presents the resulis pertaining tu\tempox-ary' coalitfions,
i,e., those tentative agreements exising prior to the formation
of the terminal coalition.

www,dbraulibrgrj;?,org.iﬂ
The Success of the Experimental Manipulations

One item of the questionmajire given as the final part of the
test had each subject rate his own L& and that of the paid- ‘
participant on the assumiption that discrepancies in these ratings
would be indicative of\the extent to which a given subject re-
garded A, the paid-participant, as comparable to himself. The
mean discrepandiés in 1.Q. ratings (rating of paid-participant
minus self-rafifg) are evaluated in the analysis of Table 1.
The subjectg’\rating of A in the peer conditions averages 3.27
L.Q. points\imore than the subject’s rating of himself, but in the
non-peerCondition it averages 13.00 points more. This diffgr-
ence s significant (P < .001). Discrepancies are not signifi-
cantly different for comparisons involving task importance,

'§§!h0015, or interactions. The assertion can therefore be made

With a high degree of certainty that perceived differences in
comparability were in fact established between the peer and
the non-peer conditions, such differences being based upon
assessment of intellectual status,

A second item in the Questionnaire had the subject evaluate
the bargaining situation as to the degree of validity they betieved
it to have as a measure of intelligence. It is possible to infer
from these ratings the degree to which subjects considered
their performance in the bargaining situation as important, and
thus the extent to which they were thereby motivated, The
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Table 1

Analysis of Discrepancies Between Subject’s Rating
of Paid-participant and Rating of Seli on 1LQ. -

_ Source d.f. Variance Est. P
Impertance 1 11.16

Peer vs, Non-Peer 1 5,304,02 <.001
Schoois 1 15.45

Interactions 4 211,66 O\
Error 48 92,70 ) \ N

N

cbtained ratings on this item are evaluated in the gmilirsis of
Table 2, Subjects assigned to conditions of high task importance
tend to rate the bargaining procedure as a moxe'walid measure
of intelligence than do subjects assigned to eduditions of low
importance (P < .001). In addition the gliﬁérence attributable
to the replications of the experiment is‘si‘gniﬁcant (P <.01),
with the SBan Francisco subjects rati;ng‘the pargaining situation
as more valid than do subjects afbhe. d experiment.

Since the San Francisco sﬂ:bject:é' rébéﬁﬁgﬁg aéﬁ%&%t less
select group in terms of collége aptitude, it is reasonable to
expect that they would be _mdre concerned over their intellectual
status and would conseguently ascribe a higher importance to
the task, )

&

N

Table 2

,\*Bated Validity of Bargaining Situation
& as a Measure of Intelligence

_: Source d.f. variance Esi_____P_
. Olmportance 1 46.29 < .001
\ ) DPeer vs. Non-Peer 1 0.57
Schools 1 7.00 < .01
Interactions 4 0.14
Error 104 0.76

The Formation of Coalitions

Assuming that the groups Were differe es
the importance of the task and the degree of c.ornp_larabﬂ}glbe- .
tween members of the group, the major qu(.es-“ftlon is the 1t' ueinc
Of. these variables on the formation of Cﬂaht.lOIIS. A rela xvedyi
direct measure of the extent to which coalitions were formed 10

ntiated with respect to
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opposition to the paid-participant is the discrepancy between
the number of points he was ahle to obtain on each triai and the
number he would be expected to obtain if the coalitions were
formed on the basis of chance. On a chance basis the paid-
participant, hereafter referred to as A, would he expacted to
receive on the average a third of the eight points available for
division, or 2.67 points per trial, as would each of the two sub-
jects, B and C. Inthe event that A receives significantly legs >
than the average of the other members of the group, he is\being
discriminated against by them as far as their willingn g's‘“to
form coalitions with him is concerned, N

The average number of points per trial earned B34 In the
last four trials under the various conditions of the) experiment

is shown in Table 3, along with the statistical.nﬁalysis of the
sums on which the averages are based.

Table 3a

ON

v

Average Points Per Tria}l Earned by A
www.dbraulibragy‘org.in

Impor, School Peer ~Non-Peer
High S.F. ~3%1.29 1.75
Stan, 1.57 2.39
(Avgs) " (1.43) (2.07)
Low S, 1.32 2.54
AU Btan., 2.50 4,36
AN (Avg) (1.91) (3.45)
(S. F. Aydd 1.30 2.15
(Stan. A¥wg.) 2.04 3.37
avg) (1.67) (2.76)
e e )
N/ Table 3b
Analysis of Average Points Per Trial for A
_Source d.f. Variance p
Importance 1 200.85 <.0
Peer vs, Non-Peer 1 274.57 <.0
Schools 1 208.28 <.n
Interactions 4 34.25
Error 48 24,89

¢ N

__Ave.

1.52
1.98
{1.75)

1.93
3.43
(2.68)

1.72
2.71
(2.21)
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It is apparent from Table 3 that A is generaily unable to ob-
tain a chance number of points under the various conditions.
The one exception is the condition of low importance and non-
peer relations at Stanford, in which A receives significantly
more points than would be expected. Under each of the two rep-
lications of the egperiment the pattern of results is essentially
the same. A obtains more points under low importance than
when tagk importance is high (P <.02), and more under the non-
peer conditions than under peer conditions (P <.01). These dif;
ferences are in the direction predicted by the theoretical assumip~
tions underlying the experiment, It should be noted that in ’e\ac‘&h
experimental condition A receives fewer points in the SapJFran-
cisco replication than at Stanford (P < ,01). This consigtent dis-
crepancy becomes more meaningful when it is recalied that the
questionnaire data gave evidence of higher impoat{mc’e being
ascribed to the task in the San Francisco groyps than at Stan=-
ford. The experiment might therefore be interpreted as includ-
ing three different levels of task importanCe Instead of two.
This interpretation would reconcile tperditferences between the
two replications, Y

The failure of A to secure the\frﬁ\’iﬁiﬂ@fab‘ihbaiﬁﬁsmted by
chance is due to two factors: (19\hé was unable to form a fair
share (2/3) of terminal coalitians even though he was willing to
offer as many as seven points, and (2) even in those coalitions
of which he was a membgrihe was unabie to obtain a fair divi-
sion (4 out of 8) of t e'\‘po’ints. The influence of the first factor
is demonstrated ip, Table 4 where the average number of term-
inal coalitions ipeluding A during the four trials is tabirllated.
The pattern of ‘mesults is the same as that involving point totals

for A. 70\
O\Y
\§ Table 42
AVET."?E"S Percent of Terminal Coalitions Having A as a Member
:‘_Irripg School Peer _w
1gh $.F. 36 46 ‘é(l]
Stan. 57 64 (50)
{Avg.) (46) (65)
Low S.F. 43 64 i
Stan, 81 88 (64)
(Ave.) {52) {75)
(8. F. Avg.) 40 55 gg
(Stan. Avg,) 59 75 oo
(Avg.) (50) (65)
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Table 4b

Analysis of Average Number of Coalitions
Having A as a Member

Source d.f. Variance P
Importance 1 4,67 < 05
Peer Cond. 1 5.78 <08 \
Schools 1 5.78 <.05, )
Interactions 4 0.18 R\,
Error 48 1.01 D

’ 4

L !
N,
N

For all conditions combined, A is able to form ’fev;rer:terminal
coalitions than would be expected on the basis«Of chance {P <.01)},
and therefore fewer than the average of thextwo subjects. Dif-

ferences for each of the experimental co
at the five per cent level and are in the'

J{sti,tions are significant
expected direction,

The influence of the second factof{is shown in Table 5 where
the average number of points per ceglition obtained by A when
A 18 in a coalition iwtabdbiredibr T ovaitysis shows whether or
not A is able to obtain a fair.ghare of the points when he is one
of the partners in a coalitighs It is apparent from the table that
the differences between means are once more in the anticipated

directions.

o\
®)

2

N\

Avetdge Points Per Coalition Earned by A

N\

Table 5

Motiv, .~\x’1‘\“Sch001 Peer Non-peer Ave.
High(\" &, F. 3.60# 3.58 v+ 3.59
Qe Stan, 3.19 3,77 3.48
~O Avg. (3.36) (3.68) (3.53)
MMow S. F. 3,12+ 4.00 3.63
Stan, 4.15 %= 5.16 4,69

Ave. (3.68) (4.57} (4.18)

S. F. Avg, 3.36 3.81 3.61
Stan. Avg. 3.63 4.45 4,06
(3.51) (4.15) (3.86)

*mean based on 5 groups.
**mean based on 6 groups.

Those groups in which A never succeeded in entering a coa-
lition had to be omitted from the analysis.
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The differences hetween the peer and non-peer conditions and
petween the high and low importance conditions are only signifi-
cant at the 10% ievel of confidence.

The results of these three analyses are consistent in indi-
cating that coalitions tend to form in opposition to the player
who obtains an initial advantage. The strength of this tendency
is greatest when the task is of high importance to the members
of the group und when they perceive each other as peers Or
equals. As a result of this tendency, the paid participant is un«
able to forn his fair share of terminal coalitions and must pay
more than a fair share of the points in order to form SUCAS >
coalitions. Lo

One additional analysis of the terminal coalition dat\was
made to check on the validity of a deduction whichtwas made
from the theoretical formulation of this experifiept. We would
expect that in the peer situation B and C wa%d be competing
primarily with A and not with each other. (W& should then find
that terminal coalitions between B angd 6100k the form ofan
even division of the points. Conversély, under non-peer condi-
tions, B and C would be competin‘g.\g{;ié%?_gily with each other,
since A would be regarded as noﬁ}curhpar?ih' P He of them,
As a result, terminal coalitions involving B and C would tend to
take the form of an uneven-division of the points. An analysis
of the types of terminal.foalitions involving B and C Su}f.)p‘DrtS
this deduction. Undex peer conditions 83% of such coalitions
involved an equal gplit, but under non-peer conditions only 34 %
of them did so, asAifference significant beyond the .05 Jevel.
Thus, COmparaﬁ)Iity of A to the other members in‘the group,
induced by the peer conditions, makes a coalition mvolwgg an
even split @ Jdesirable and stable outcome for the two subjects.
Converg@iy, wnen A is incomparable, the competition between
B al?df,(:‘/ makes the desirable outcome, for either c.)ne, an agree-
metibwhich gives him more than the opposing subject: -

JAnother indication of the opposition to Als shown. py an an:a
lysis of the temporary coalitions, that is, those coalitions ter; 2(1};
tively agreed to during the pargaining process- Qne meas;lr
these is the number of excess points A must pay 1n qrder :’ c
break up an existing coalition between B and C. A dlsﬁf‘i}p;wj‘;s
score was computed for all temporary coalitor nw ;:;t the
not a memper. This score is the difference_ between W e
coalition subject was receiving in the coalition and wh.at €

. . iti If the subject re-
cepted from A in breaking up the coalition. Ol ed 2
fused all offers from A then the discrepancy was calcula o
if the subject had accepted an offer of g points, one more

£
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the total number available. TFhe average ol these for sach ex-
perimental condition is shown in Table 6.

Table 6a

Average Diserepancy Paid to Break B-C Coalition

Impor, School Peer Non-FPeer Total
. . L N
High S, F. 2,2 2.0 W M1
Stan. 3.4 2.2 NN 2.8
(Avg.) (2.8) .1 O (@5
Low S. F. 2.4 1,80 2.1
Stan, 1.6 {3 1.4
(Avg.) {2.0) {5) (1.8)
(8. F. Avg.) 2.3 D) 19 2.1
(Stan. Avg.) 2.5 O 1.7 2.1
(Avg.) (2.9 (1.8) (2.1)
wiww.d bra,flggi‘gj'érbm‘g. in
Analysis of Discrepa&néf’f’aid to Break B-C Coalition
Source A2 Variance Est. P
R
Impor. \\...3 1 841.1 < .05
Peer Cond. p.\ 1 841.1 < .05
Schools 1 1.4
Impor. Schabls’ 1 970.9 <.05
Inter. ,,\Q" 3 14,1
ErroI:\:..n’ 48 164.1

&

The results follow the expected pattern. A must offer more
~pomts when the task is of high importance than when it is of 1low
importance, and must offer more under peer conditions than
under non-peer, The significant interaction between Importance
and Schools is due to the fact that in the San Francisco data
there are no differences between the High and Low Importance
conditions while in the Stanford data these differences are large.

DISCUSSION

The theory which forms the basis for this experiment hy-
pothesizes that competition arises because individuals, in
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situations where they are evaluating some ability, are strongly
motivated by a concern about their comparability to other mem-
bers of the group with respect to the ability which they are
evaluating. This concern OVer comparability leads to attempts

{0 assess the abilities of others in relation to themselves, But

an individual is not concerned over the comparability of all in-
dividuals. Rather, he tends to exclude those who are perceived

as definitely superior or inferior to himself in this activity and

to concentrate on those who are perceived as being within the
same general range of ability.

To the extent that concern over comparability is present{ dis-
crepancies in points or ofher symbols come to have relaiilve
rather than absolute value. They tend to be interpreted pri-
marily as indicators of the individual’s status with séspect to
the other members rather than as something of ditéet utilitarian
value, This is especially true when the points gained represent
intellectual, athletic, or social ability, but jt s also probably
true to a large extent when they represe /froney or commodi-
ties. As a result, whenever the task id{mmade more ilr:lportantut to
an individual, the value of these POLY(SH cr@g@s. This, in turn,
adds to his concern over compara%ﬁﬁ%ﬁ?gac ory afi &80 to his
motivation to surpass them on the task. _

It follows irom these assurﬁptions that in a bargaining situa-
tion where all group members regard one another as comparable,
stable coalitions will form in opposition to any member of the
group who gains an Adwdfitage. The point advantage held by this
member of the group is interpreted by the other group mep‘lberds
25 a loss in statds to them, and they are consequently mc?t1va:te
to overcome if, YCoalitions between them satisty the motivations
of both to petain comparability with each other while at the same
time redyeing the discrepancy petween them and the 1nd1V1dug1
with the\initial advantage. The individual with the advantage in
pointsicannot offer the same type of satisfaction. He_mll be
&Ompelled to offer excessive points commensurate with _the o
Scbre differential which exists in order O form a c_oahtmn. crlled
the other hand, if this advantage is held by an in_dmn:lual_r_ega;‘C|
by the other two as non—comparable, coalitions_m Dppositmn
him wil} have less tendency to form, for RIS point advan ag‘iould
represents a smaller loss of status. Non-peer conditions ith an
therefore be expected to be more favorable for a person wi
initial advantage than would peer conditions. _

It Similarlygwould pe predicted that the forrpatmn of f;a:flihe
Coalitions will be even more prominent as the 1mgortar;a fany
task is increased. This follows {rom the assumption t
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increase in the importance of the symbols invelved strengthens
the motivation to achieve comparability in the group. Thus,
conditions of high task importance will be less favorable to the
person with an initial advantage than will conditions of iow im-
portance,

The results of the experiment strongly suppert this general
formulation of the motivations involved in bargaining behavior.
This is shown clearly in the evidence that a group member fe-
ceiving an initial advantage in points is generally discriminated
against throughout the remaining trials, It is reflected in’the
inability of the paid-participant to enter into the expdcted num-
ber of terminal coalitions, in the relatively high price he is re-
quired to pay in order to enter such coalitions, and in discrimi-
natory bargaining in opposition to him as showﬁjin the within-
trials analyses, \%

The evidence indicates that the strengthYof this opposition is
a direct function of task importance and 0f the degree of com-
parability between the group member&.® Such an interpretation
is strengthened by evidence from the Guestionnaire that the
conditions of the experimpntuwenipecgsssfully manipulated.

Differences between the two\conditions of importance in the
experiment are reliable and}iﬁonsistent in the analyses involving
terminal coalitions, and jn the intra-trial analysis of the excess
of points required to bx@ak up a coalition between the two sub-
jects, In each of thede)cases the bargaining was shown to be
more favorable to the paid-participant under conditions of low
impartance than{when importance was high.

The effects{of the peer and non-peer conditions are similar-
ly in substaptial accord with the predictions. Under peer con-
ditions the paid-participant is less able to obtain points, less
successful in entering into terminal coalitions, and he is re-
qui:r;e);:i to pay a higher price in order to do so than under non-
bgericonditions. This influence of peer relations is shown also

{bythe excess of points which A is forced to pay in order to
break up an existing coalition.

It appears then that a large initial advantage in points re-
sults in an intensification of competition against the paid-
participant when that individual is regarded as comparable in
ability. If the individual involved is regarded as non-compara-
ble, the competition persists among the remaining group mem-
bers, but the discrepant individual gains additional advantage by
becoming the medium by which changes in status can be ac-
complished between the others. Support for this latter state-
ment comes from two sources: (1) examination of the relative
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frequencies of occurrence of even and uneven point distributions
in terminal coalitions involving B and C show that these tend to
be formed with equal division of the points under peer condi-
tions, but that under non-peer conditions such coalitions involve
mainly inequitable distributions, and (2) an examination of the
low importance, non-peer condition indicates that the paid-
participant was able to obtain a significantly larger number of
points than the average of the two subjects. (Table 3)

Insofar as the findings in this experiment have generality,
they have implications for two fields of inquiry, that of game,
theory and that of motivational theory, especially as eachap=
plies to social situations. Game theory specifies that .ghe
choices hetween alternative strategies or courses of aetion
should be chosen in such a way as to maximize utility.

The present study suggests that the nature ¢f the utility func-
tion for individuals is not necessarily invariant, but is subject
to modification from the effects of situafi { variables which
may differ greatly from one context tQ the next. Consequently,
these results indicate that motivational factors such as those
suggested in the present experimeht-nged to be included in
formulatioens relating utility tq'ézterﬂaﬁ? -aulibranyorad meference
points, " ’ )
The findings are more-directly relevant to theories of social

motivation and perception especially as these pertain to be-
havior in groups. ? @uéuggestion is that an important determi-
nant of behavior in group situations where all members are en-
gaged in a commnten activity is the concern of each member _3b0ut
his status relafive to others on that activity. This is espegally
true in actiyities where there is no clear cut criterion available
for individhals evaluating the adequacy of their performance.
Conseqiently when 2 discrepancy between thelr standing
and that of others is perceived, individuals are motwa_ted to‘re—
d8ck that discrepancy. This motivation will m'anife‘st itsell In a
variety of ways, one of which is to form coalitions it opposition
to any other member having a higher status on this task.

Assuming that this formulation has generality, it glves rise
to two important theoretical probleras. The resu_lts Qf this ex-
periment have shown that the strength of the motivational faf;_t
tors involved depends in part upon the imporiance of the task 10

the individuals involved and in part on the degrg; oift t;g::g;t:;
bili nsequen
ility between the group members. C© \ine whether

necessary to formulate the conditions that determine o e
or not a given task will be accepted as jmportant by & &

. . i ion
dividual, and the factors controlling his acceptance OF rejectio
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of other individuals as a standard against which to evaluate hig
own performance. These factors undoubtedly include eultural
and social variables as well as those unique to the past history
of the given individual.

SUMMARY
DUMMARY A

The preszent experiment on competitive bargaining behavior
in a group situation utilized 58 groups, each composed Qf‘tvfo
subjects and a paid-participant. The experimental varidbles
were: (1) the importance of the task for the indiv}dﬁzﬂs involved,
and {(2) the degree of comparability between groufmembers
(peer versus non-peer conditions). Subjects, were assigned to
one of four experimental conditions as folloWss (1) high task
tmportance, peer relations, (2) high task ifthportance, non-peer
relations, (3) low task importance, peerirelations, and {4) low
task importance, non-peer relationsh\,/

The experiment was designed so that the three group mem-
bers were competing,@m_@m,gaﬁhm'ig&ﬁeg_iﬁor points, but the for-
mation of a coalition between &¥0 of them was necessary in
order for points to be earnec,l.fo The procedures used ensured
that the paid-participant Always obtained a large initial advan-
tage. The rules goverping'the formation of coalitions specified
that any agreement 8'@111(1 be broken by either member of the
coalition if he desired to enter a coalition with the third mem-
ber. This madepodsible a continuous sequence of bargzining
between the three’members until the conclusion of the trial.

The resg.lps“of the experiment were as follows:

1. Th%grbup member receiving a large initial advantage in
points received significantly fewer opportunities to form coali-
tionsithan did the other group members, and was required to
PAYA relatively higher price in order to do so.

2. The reduction in opportunity to form coalitions and the
commensurate increase in price demanded of the person re-
ceiving a large initial advantage in points were more pronounced
under econditions of high task importance than under conditions
of iow importance.

3. The reduction in opportunity to form coalitions and the
corresponding increase in price demanded of the person re-
ceiving a large initial advantage in points were more evident
under peer conditions than under non-peer conditions.
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4, The results summarized in the three preceding paragraphs
were reflected not only in the formation of terminal coalitions
and the distribution of points therein, but also in the pattern of
bargaining which occurred within trials.

FOOTNOTE

1. An anzlysis of co-variance on average points per trial earned
by A adjusted for differences in number of coalitions of wl}ich A
was A member yields the same conclusions, ; W)

%

~
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CHAPTER XVII

ON DECISICN-MAKING UNDER UNCERTAINTY*

by
C. H. Coombs and David Beardslee
N\
UNIVERSITY OF MICHIGAN
O\
7N N
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I. INTRODUC TION

NN
S 3

This paper presents a model which is a framéwork for a
great variety of experiments in the area of defision-making
under uncertainty. It is intended that this medel will relate and
organize experiments that have alreadyBeen carried out and
also suggest many more. The behavigiwith which the model is
concerned is the preferential decisiobs' of an individual among a
Set of "offers”, Each of the offers\consists of a "prize'" (what
he stands to win), a "stake' {whdt he stands to lose) and a prob-
ability of Winning. N : www dbraulibrary org.in

Willingness to gamble,-or utility for risk, will be regarded
38 2 suppressed variablé primarily relevant for explaining dif-
ferences between individuals' decisions not explained by differ-
nces in their utilities or probabilities. The three variables,
Prize, stake, and.prbbability of winning, are each regarded as
Dsychological ¥aiables, not necessarily linearly or even mono-
tonically relgted to, their "real” properties, e.g., "'dollar” values
Or "objeqtiVe™ probabilities. The three variables, then, with
Which t.h&ﬂodel is concerned, are utility for prize (U{P) ), utility
for stake' (U(8)), and psychological probability (). _
~JThe problem of the measurement of utilities and psychological
Lrobabilities is currently of great concern to psychologists [4],

W&s initiated under a Ford Foundation Grant (Deci-
Slon Processes) to the University of Michigan for the Summer
Seminar, ang completed under Office of Naval Research Cor}tf'act
Nonr-374 (00), NR-041-011. We have benefited from the criti-
Flsms and suggestions of many people in the course of Cons'truct—
Ing and testing this theory. It will not be possible to mention all
of them, but we wish to express our appreciation particularly to
N. c, Dalkey, Ward Edwards, Leon Festinger, and R. M. Thrall.
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256 DECISION PROCESSES

(5], [9], mathematicians [8), [11], philosophers [1], and econo-
mists [10], {12]. Measurement of such variables on an interval
scale requires the existence of a common unit of measurement
and a common arbitrary origin, and further requires estimates
of these, While models have been constructed for such purposes,
as yet they have not been adeguately tested and sustained experi-
mentally. The method [3] of the experiments reported here does
hot require such assumptions, as it leads to an ordered metri
scale [2] in which the stimuli are ordered and order relations
on the distances between some pairs of stimuli are knovmg\Fhis
method permits constructing such scales for a particulak Individ-
val. This is a desirable feature, as it may he anticipated that
utilities and psychological probabilities are peculial ™ty individ-
uals, ¢*

In the section that follows, the component va’i:iables ol the
theory will be briefly discussed; then there Wil be a section
classifying the different kinds of decision;-ﬁ}aiking under uncer-
tainty, giving, in effect, the different "dimensions' of the prob-
lem. A descriptive theary of decisidn=making under uncertainty
is then presented in detail and follqwed by some experimental

®

results, &N
. d br‘atfjl:ib{'ar‘y .orgin
II. PHE COMPONENTS
o\

A, Utility, Throu& out this paper the term "utility" will be
regarded as synonyn}ous with "preferability," Degree of utility
will be taken to besdegree of preferability. If an individual says
he prefers A Ae*B, for whatever reason, this will be interpreted
43 meaning He'tas 3 higher utility for A than for B at that mo-
ment, I%]ig‘af-e 1s inconsistency of his judgment under replication
the majority judgment may be taken as indicative of relative
utilitysy If an individual 5ays that A and B are "harder to choose
betWeen™ (as stakes or prizes) than are B and C, this will be
@ald to imply that the difference in utility (as stakes or prizes,
respectively) of A and B (the distance between them on a utility
scale) is less than that between B and C. Formally,

(1) A >p B if and only if U(P4) > U(pp)
(2) A >¢ B if and only if U(S,) < U(sSp)
(3) (AB) % (CD) if and only if Kﬁg CD

where:
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g moans the judgment “preferred to as prize';
g nieans the judgment “'preferred to as stake”;
U{P4} s the pusychological utility of object A as a prize;

{
U(S,) is the psychological utility of object A as a stake;

(AB)  denntes the pair of objects A and B;

>§ meaans the judgment "harder to choose between, as
stakes, than'; N

_ . _ O\

AB is the distance between the objects A and B; (™

13 means "less than' as stakes, ~\ by

Of course, an entire universe of problems arjges, all of in-
terest to the peychologist and economist, as fo how the individual
arrives at his utility for an object: what gives rise to his value
System, These aspects of the utility va iap\e are not considered
here. Thigs paper is concerned with méél:}uring the utilities as
they exist at any time in an individqa‘l;'énd with the role they play
In decision-making under uncertajnty. ‘
tiofzﬂﬁr@ prlze‘a:nd utility ~.f%t'f’r§9%%r9Bﬂ%'%lat%!go?:lg;l,f“ﬁz““a

part which may nogbe formally necessary
mode] but is necessary, or at least highly desirable, for design-
Ing or relafing experimefits. ''Prizes" are the objects which an
individual stands to r{é«:?r gain, ''Stakes" are the objects which
the individual stands to lose or give up. Utility scales of either
Stakes or prizes gve conceived of as running from negative .
utilities through.Zero to positive utilities. The prize for winning
may be an object or consequence which the individual does not
want and\(']i}éh would have negative utility as a prize. Corre-
spondingly. the stake an individual puts up or invests may be an
?bjeptf}iihich he wants to get rid of and, in consequence, this ob-
]Eic}: tay have a negative utility as stake.

B. Probability, The following table is constructed to clarify
the terminology used in the discussion of probability. The bot-
tom row of the table, psychological probability, is rega.rded as
an intervening variable between mathematicat probals.:ﬂlty'and
decisions, This variable is involved, at least implicitly, in a

large portion of human behavior.



£

258 DECISION PROCESSES

— S
} Observation o
Replicable ’— Single BEvent
frequency interpreta- ‘ mathematizabie nn basis
4 @ | tion of probability; | of relative weights of
s objective probability. i contributing factors which
§ E | are empirically deter-
2 | mined. QD
= | personal probability: )
= &Y
8 = these may be percep- o
el e tions of relative fre- A »
& & | quency with objective subjective grohability or
':g‘ frequencies implicit, | degree of gelief.
g or psychological values |
& for explicit objective \
probabilities. \\
N

The two kinds of personal prob,abili’ties may be clarified with
examples, A personal probahilifysvhich is based on implicit ob-
jective frequencies would be agx individual's feeling of the likeli-
hood of filling a fld%‘ﬁ%v(ﬂﬁ{aa%'%ngarc‘%’x?ﬁ%}naw, derived from his
past experience and not pased on mathematical calculations ROT
on an explicit tabulation of such events in the past, Correspond-
ingly, a personal pr\c{lﬁability based on explicit objective fre-
quencies would be his psychological value for the known objective
frequencies, whether obtained mathematically or from a tabula-
tion of a nurder of such events. Whether personal probabilities
are linearlyyrelated to relative objective frequencies or whether,
for examplé, extreme relative objective frequencies are inflated
or deflaled in psychological value, are questions of experimental
facte\They can be settled only by measurement of the psycho-

..Jojg*i'éal magnitudes of the relative frequencies independently of

their objective magnitudes.

Examples which might clarify the meaning of subjective
probabilities are: an individual's feeling of the likelihood that
a particular candidate will win an election, or that a state of
War may be declared between two countries in a given interval
of time.

Again, a universe of problems arises as to the relation of an
individual's psychological probabilities to the real world mathe-
matical probabilities, and the axioms or laws that govern psy-
chological probabilities, These problems range from gquestions
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concerning their additivity Lo questions concerning the effect of
information, atlitudes, and beliefs on the psychological proba-
pilities. As in ihe case of utility, the theory constructed in this
paper is not concerned with the source of psychological proba-
bilities and laetors affecting them but rather with measuring
them as thev exislata given time for an individual and the role
they play in dacizion-making under uncertainty.

C. DUtility for Risk. While liking to gamble or willingness fo™
take 2 risk may also be a parameter of decision-making umder
uncertainty it is a suppressed variable in this theory. Thé\rrddel
conceived nere cun only be constructed for each individtal sepa-
rately. This is hecause there are no assumptions which permit
comparing utilities or psychological probabilities between indi-
Viduals. Utility for risk would play an importaityrole in com-
parisons between individuals in decision-making under uncer-
tainty, ' W

% .\ )

D. The Measurement of Utility and Péycholagical Probability.
The theory and experiments discusaed in this paper are com-
cerned with the nature of the interrelated roles that psychologi-
cal probability and utility for Stakes W pipLasypag i the
decision-making of an indixidual. Clearly, utilities for objects
and psychological probabilities may be expected to be personal
to an individual and are’:rfot assumed here to be given as any
prescribed function af\\[heir real world characteristics. Hemnce,
their measurement:must be derived from the judgments of an
individual and phe measures obtained are unique to him.

The paradigm of these experiments involves the independent
measureméiitof utilities and psychological probabilities and then
independl;%t“observations on their "'product space."” The method
used teJobserve and derive measures of the utilities and the psy-
cholGgical probabilities is an adaptation of the Unfolding Tech-
iqle to the study of stimulus scales, This methodology is de-
scribed in some detail elsewhere [3] so only certain character-
istics of the measures will be discussed here. _

The methodology begins with the hypotheses that a certain set
of objects (prizes, stakes, statements of probability or events,
etc.) is an ordered set and that, in addition, pairs of objects are
elements of a partially ordered set. The latter set giyes a 'dls_—
tance function,” I the judgments of the individual satisfy cer_tam
Conditions, the above hypotheses are sustained and the scale is
recovered as an ordered metric [2] Such a scale has tl'le abjects
simply ordered and, in addition, some of the ndistances” between
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pairs of objects are known to be greater or less than ather dis-
tances. Such a scale lacks the convenience and power of meas-
urement with numbers, as for example on an interval scale.
However, it also lacks some of the assumptions required for
measurement with an interval scale and also is vulnerable. By
vulnerable is meant that the procedure for analyzing data does
not necessarily yield a unidimensional scale, and thug it per-
mits a test of the existence of such a scale. Hence, if uni-+ N
dimensional scales of utility or psychological probability are
obtained, they are not consequences of the model alone&' N

Ny

-

IIL._CLASSES OF DECISION-MAKING UNDER UNCERTAINTY

The general area of decision-making under u'ncertainty in-
cludes a wide variety of kinds of "environmental” conditions. It
will be desirable to recognize explicitly Seme of these “dimen-
sions" on which decision-making ungér ancertainty may vary.
The following dichotomous classes apk an initial attempt to
identify these dimensions and the'fheory presented in this paper
will be characterized in these Hifferent respects.

wwwdbr’,&fu]iﬁrary.org.in

A, Wager vs, Pay-to-Rlay, Ina wager the individual's stake
is forfeited in the eventthat he fails to win. In the case of pay-
to-play the individ a{‘pa’ys a fee which he loges regardiess of
the outcome of thefp\ay. A bet on a football game with another
person is a wager, whereas buying into a pool on a game is pay-
to-play, Buying-a lottery ticket essentjally characterizes pay-
to-play, /™

The gz;bi'y bresented here is explicitly for wager and not for
pay-tofplay. A possible modification of the theory to embrace
payﬁg&.—play would be to hypothesize that the utility of the price
);\D:[}‘iay reduces the utility of the prize by a corresponding
amount and the individual is playing a wager with "'price to play"
48 stake and a prize worth that much less,

_ B. Play Once vs. Repetitive Play. In the first case the game
is on}y going to be played once, whereas in the second the game
1s going to be played a number of times. Conceivably, an indi-
vidual's choice between playing a silver dollar slot machine or
a nickel slot machine might be conditioned by whether the game
is to be played only once or repetitively, An hypothesis might
be that an individual would be willing to take a greater risk in
"play once" than in "repetitive play."




ON DECISION-MAKING UNDER UNCERTAINTY 261

In repetitive play there are a number of subclasses of en-
vironmental situations: the successive offers may be the same
or differcnt, the lenoth of the series may be known or unknown
to the subject, the length of the series may he determined by
the subject or ihe experimenter and before or in the course of
the play. There are, in addition to these subclasses of repeti-
tive play, subclasses pertaining to feedback, which may be im-
mediate or delayed. Knowledge of success or failure may be A
immediate o» delayed, and if immediate there may be either
immediate or delayed payoff. Knowiedge of success or failufe
is information which may affect psychological probabilities;
payoff chanpes asscts which may affect preferenceg,l@ef'ween
offers (i.e.. the locus of the indifference curves). A 3
The experiments reported here are all underithe play once
rule. \V

C. Method of Choice vs. Method of §iﬁ$1é Stimuli. In the
Method of Single Stimuli an offer is.available which an individual
may accept or reject. In the Methofl pf Choice two or more al-
ternative offers are available andie individual expresses a
preference. The information.dontained in the data is different
under these two conditions.\In W MEthod b Sipgle Biimuli the
information is an absclute\judgment as to whether the offer is
on one side or anothep-Of an indifference gurface in the product
fpace_ This surfaa{\fhﬁs partitions the space into a "play™ and

1o play” region s In‘the Method of Choice the information s a
relative judgmentas to which of the offers is "hetier"”, in some
sense, to the (hdividual.

The Methtd of Choice may be further characterized as to
Whether\the choice is compulsory or voluntary. If the choice
18 Vo]‘m}‘&ry no preference will be expressed when all offers
Iie’iﬁfhe "no play" region; hence, there is some absolute in-
Agtmation in such judgments, as well as relative. If the choice
1§ compulsory a preference is always expressed and th.e er}tlre
product space may be studied, but there is no information in the
data from which "play" and "mo play' regions may be con-
structed.

The theory presented here is const
Method of Choice and the experiments
preference judgments.

ructed explicitly for
all involve compulsory
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IV. A DESCRIPTIVE THEQRY

A. A General Psychological Hypothesis—The Maximization
of Expected Utility. The continua described permit a simple
descriptive theory of decision-making under uncertainty, It is
assumed that the pgychological continua underlying these vari-
ables have ratio scale properties but in the experimental pro-
cedure used these scales are only recavered up to an ordereds
metric. The basic hypothesis is that in deciding between un=
certain outcomes or events the individual chooses that of.fe}\or
alternative which maximizes his expected ufility., Note“thal'this
theory deals with maximization of "expected utility)lfip\ciz with
"utility of objective expected value." “Expected ugliity” is de-
termined by some combination of U(P), U{S), and “%, and is to
be distinguished from utility of expected outéome, U [ohjective
probability x objective prize]. \

This hypothesis is precisely analogousl\bo' the assumption
frequently made in economies, save fgatthe quantity maximized
here is one involving U(P), U(S) an@)¥, all of which are psy-
chological magnitudes. To decidewhich one offer involves a
higher V¥, a larger U(P), and i€s8 U(S) than any other offer,
the simplest hypothesis ig that the indiyidual will prefer the
offer that is muimﬁ“iﬁ'%ﬁ@%&%@%&n the individual must
choose between two offefs, one of which invoives a larger prize
than the other but with 2 lower ¥ of obtaining it, he must in
some way decide "h\s&r much™ utility to give up for a given in-
crease in ¥, or §0w much larger stake he will give to obtain a
chance on a lapgér prize, and so on.

This theery’is offered as an hypothesis about the “'rates of
exchange!™in such decisions, The hypothesis is that the indi-

vidualaalways chooses that one of the available aiternatives for
whichyF is largest, where:

40 E = yFUPY - p3USY, and

E = expected utility;

Yw = psychological probability of winning the
prize, 0 £ !f}w < 1;

utility of the prize;

a
=
1t

Yy, = bsychological probability of losing the stake,
0% Y, =1,

utility of the stake;

il

U{3)
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tne exponents X, y, z, w are parameters defining

irr the individual the "relative weight” or ''relative
imporiance” of Yy, U(P), ¥, and U(S), and are

all = 0.

It is to be remembered that E, U(P), and U(8) are all psy-
chological mugniludes, rather than stimulus parameters,

Equation (4] deseribes a general theory with more parame-
ters than desirable. In the discussion and experiments which
follow, only the case in which ¥ = 1 - ¥, will be treated, 4>
though the gencral theory as stated in equation (4) allows:,fqr
situations in which the probability of losing the stake is.iot )
equal to 1 - . A further restriction in the discussion’and
experiments which follow is the assumption that x €y z=w=1
unless otherwise noted. One illustration of a cagedin which x
might not be equal to 1 might be “wishful thinking,™ that is, an
overestimation of the i of winning. "Utilityfor risk may be
interpreted through these parameters, Su /considerations will
not, however, be pursued in any detail her€, and, unless spe-
cifically noted, the discussion whicly follows will concern only
t?e theory modified by the simplifging assumptions just men-
tioned. oi.:{\-.’fw,dbraulibrary.or in .

Although the working hypothesis that utility of a%wen object
as stake is the negative of the utility of that same object as a
nNegative prize appears héxe, this assumption is not necessary
to the validity of the géneral theory. It is not assumed, on the
other hand, that the\%ﬂity of an object as positive prize is the
negative of the utility for winning a debt of that object as & neg-
ative prize. Symbolically, the working hypethesis is

G Uf‘ﬁ’ﬁﬁ © U(S,) < 0, then [UPAL = |UBA

(and it js\not assumed that |U(Pa)| = [U(Sa)l when
UP AU ) > 0.)

N

o ~\This theory as expressed in equation 4
g assumptions of a psychological nature. >
utility and psychological probability are assumed to exist ar}d
satisfy the axioms for the real numbers, but these scales will
be recovered only at the level of an ordered metric. Second,
the hypothesis implies that the variables are independent, that
they do not interact when combined in an alternative. By this

is meant that a measure on any one of the variables U(P), u(s),
and ¥ is independent of any measure on each of the other two
variables with which it is associated in an offer. For example,
an ohject A constituting a prize is assumed to have a measure,

involves the follow-
First, the scales of
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U(P,}, which is independent of the probability of winning it and
1ndependent of the stake involved, It is this assumption which is
implicit in the determination of the , U{P}, and U(S) scales
as independent variables, The measures of U(P} and of HIE)]
are obtained in a situation in which ¥ is implicitly censtant; the
measures of psychological probability are obtained without men-
tion of U(P) or U(S). However, the parameters x, y, &, and w
allow the individual to make his own "idiosyncratic weightings"
of ¥, U(P), and U(S) in arriving at an expected utility. Thelt-
fect of these parameters is, of course, {0 carry through am ex-
ponential transformation on the axes as measured. )

Thirdly, in the general case, it would be assumed ihat the
values X, y, z, and w were constant for this indiyidual over at
least the set of alternatives under study. Lastly{ e theory as-
sumes that the individual does combine ¥, U@}y and U(8) into
an E (the psychological value of an offer, opMie utility of an
outcome), and chooses on a basis of mazilizing E. If the E
of one offer equals the E of a second oiier the individual is
said to be "indifferent” between the)wo offers; that is, he wiil
not care which offer he chooses. B’ehavmrally, indifierence will
appear as a frequency of choicesnot significantly different from
50% in repeated chpicesi helndprraltenatives 1 and 2, (This is
discussed in greater detailin (8], page 374.)

If it were possible to®btain measures of the three variables
¥, U(P), and U(S), and\the parameters x, y, z, and w which
were elements of gativ’scales, the hypothesis would be simple
to test, Since ode cannot obtam even interval scale values for
psychological ma:gnltudes without strong assumptions, it is
necessary 10 sée what properties of the model can be made the
subject of? h}potheses testable at the level of an ordered metric
on the \@r‘iables

One\way of visualizéng the relations between ¥, U(P), and
U(g) is to regard them as orthogonal axes of a Euclidean space.

~~Bath alternative can then be represented by a point (¥, U(P},
U(S)) in this space. The equation for E then defines for any
value of E a three dimensional surface, (If ¥, is not assumed
to equal 1 - Yny, it is of course necessary to deal with a four
dl_mensional model.) These surfaces over which E is constant
will be called "indifference surfaces,” since by definition the
individual does not care which of two alternatives is chosen if
their E are equal,

The relation between ¥, U(P), and U(S) will be clarified by
examining successively the relation between each pair of them
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with the third held constant, First, the relation between ¥ and
U(P} will be examined with U(S} held constant.

B. Stake Constant. Holding stake, U(8), constant is equiva-
lent, geometrically, to passing a plane through the three dimen-
sional space perpendicular to the stake axis. These planes, in
which U{3) = K, will be called "stake planes." In these,

E = YUP - (1-PK N\

1. Zero Stake. If U(S) = 0, then E = YU(P), Geomeitiedily,
this is 2 plané which passes through the origin and is the)locus
of all offers in which the individual puts up something\which has
no utility, positive or negative, for him. This zerG\stake plane
cuts the indifference surfaces in a family of tr].mfcﬁtgd hyper-
bolas which describe those combinations of ¥hand U(P) which
make up offers between which the individualjs indifferent. The
Indifference curves sketched in Figure I $ummarize the fact
that for positive prizes the individualiglindifferent between a
Small prize with a high ¥ of winningvdnd a larger prize with a
Smaller i of winning. For negatiye prizes (U(P) < 0), he will
be indifferent between a small-atgatierpribsawtnne bgh ¥ and
a large negative prize with }0W ¥. For a prize U(P) =0, the
indifference curve will belvertical, since if the individual never
¥ins or loses anything,the odds do not matter, This vertical
Indifference curve w‘\f(be called the "null line."”

g e

~U{p)
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The theory implies that indifference curves other than the
null line will be convex. This means that the slope of 4 given
curve increases monotonically with increasing distance from
U(P) = 0. The slope of an indifference curve indicates at that
point the "'rate of exchange” between psychological probability
and utility for prize. An indifference surface or curve may be
identified (labelled} by the value E associated with all points

onit. When ¥ =1, E = U(P), (See Figure 2.) ~

wiel

+ U8}

W, dbraul}b‘r'ary org.in

Note that in this case the general form of indifference curves
is not dependent on theﬁssumptlon for the parameters that X =
=1. For when Rﬁe\ﬁxU(P)Y x 20, y 20, the indifference
curve will certaiuly convex.

2. Positng;'stéke. I U(S) = K, K >0, then
R = PUP) - (1 -PK.
In add@on to a family of truncated hyperbolas, there will exist 2
vertical indifference curve (null line) located at U(P) = E = -K,
andthe indifference curves in the plane U(S) = K will have the
\Iorm shown in Figure 3,
This vertical indifference curve occurs when the prize to be
acquired has a negative utility equal to the utility of the stake
to be lost. In this case, the individual obviously will not care
whether he wins or loses, since whichever happens he has to

give up the same amount of utility. Consequently, he will not
care what i he is offered.
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3. Negative Stake. When U(S) = K, K < Q\‘by the assump-
tHon of equality of negative prize and positi\é'stake or of positive
Prize and negative stake (equation {5)).the’situation is a trans-
lation of that for positive stake. The’npH line will be at

up) = 'g)‘v’\ﬁfd'ljlrga'ulibrary.01‘g.in

4. Some General Propertigs: of Stake Planes, By hypothesis,
an individual's preference ameng any offers will depend upon
their psychological expecté'd values, E, i.e., upon the relations
of the indifference surféees (here, curves) in which those offers
lie, Offer 1 (¥, U(}Q\)') will be preferred to offer 2 ({3, U(P2))
if and only if the inlifference curve through (¥1, U(P1)) lies"to
the right of" o, Y@pove” the indifference curve through (¥,U(Py)).
This is the inférmation assumed to be contained in the data when
the Method,e?f%hoice is used to observe behavior,

In geneyal, when =1, E = U(P). The indifference curve
which contains the offer =1, U(P} =0 is the locus of all of-
fers foe ‘which E = 0, i.e., all offers in which the individual's
&xpeeted outcome is zero. This curve divides the plane into a
%Ositive expected outcome' and a "negative expected autcome™
portion, '

That portion of the plane for which E > 0 is presumably the
locus of all offers which the individual will wish to take when the
alternative is not to play, since refusing to play is accepting the
alternative (¥ =0, U(P) = 0, U(S) = 0). In the general case, the
E = 0 surface partitions the space into those offers the individual
will take, and those he will refuse if he is permitted to do so.
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The portion of the space (or plane) for which E > 0 we term
the "play region" and its compiement the "no play region.”
These are the two regions which are distinguished when the
Method of Single Stimuli is used to shserve behavior. Tthe

E = 0 surface is called the boundary-of-play surface.

The vertical indifference curves mentioned previously in
connection with the stake planes are the intersections of the
stake planes with a vertical surface through the origin called,
the "null surface.” The null surface contains all points foh
which UPY ¢ = UB)¥yY. If y = w the null surface bedomes a
null plane as indicated in Figure 4. This plane intergactis a
horizontal plane in a line for which U(P) ¥ = U(Shi Y

)
\ ‘gm‘#’ff _\"//_'1_‘}
// //'/
i .
+
4 !
o |
é www dbraylibFary.org.in |
SR ar |

&SN

Z v ‘\g\ / \\_‘,_’ /—_,\,4‘:\'[&' ALANES

:o\: 7 i U(s)
\:\ Fig. 4,

2 8

:‘.\':T‘ﬁe indifference curves through points on a line parallel to

,<‘t;he' nuli plane, ¥ constant, have the same slope. This can be
Seen by noting that if we take a given indifference curve through
(i1, U(Py), U(81)) and consider the curve through

(Y1, UPy) - C, USy) + C).

Let the parameters of these two curves {(cf. equation (4) ) be
E and E' respectively, then we have :

N E' = ¥10U(Py) + ©) - (1 - ¥y)(utsy) + C)

E' = Y1UPy) -1 - ¥y) U(sy) - C .
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Hence, E' = ¥ - . and the rate of exchange of ¥ and U(P) is
mchanged. Since it is the relation of ¥ and U(P) which defines
the shape of the curves in stake planes, the indifference curves
related by U{P} - U{P) - €, U(S)' = U(8) + C are all of the
same shape. It is clear that if U(S) is increased, the slope of
the indifference curve through a given ¥ and U(P} becomes
less,

If x and 7 are not both equal to 1, the shapes of the indif-
ference curves will change and certain indifference curves Will\|
now possess points of inflection. An example of an inflected in-
difference curve is shown in Figure 5. What psychologicalap-
plications such a situation might have have not been studigd.
Bizarre as such an indifference function may seem, dtis worth
noting that the existence of an inflected indifferenc@purve is
potentiaily determinable at the level of orderedgn}etric data. It
is at least conceivable that some cases of ''apparently irrational
behavior” might be explicable on some sugihbypothesis as X or
z3# 1. I would still be the case that oné éffer will be preferred
to a second offer if the indifference curye containing the first
lies to the right of the indifference curve containing the second.

’V»‘rw:‘»&_dbraulibr‘al'y.or‘ dn

C. Prize Constant, By holding prize, U(P), contant, planes
perpendicular to the U(P) axig'are obtained. Indifference curves
in these "'prize planes" will\be truncated hyperbolas gimilar to
those in stake planes, g@:‘k that the preference is assumed to be
for smaller stakes a\fkfbr higher probabilities. The effect of
this is to "invert' 4ke generalized hyperbolas in the sense of
Figures 6, 7, 8, ;"

1. Zero Prize. (U(P)=0). Inthe case that U(S} > 0, the
individual ¢annot win anything, and he will prefer to put up
Smallerg i%es, and will prefer smaller probabilities of losing
his stgkﬁe, Since Yy =1 - Yy, he will prefer therefore larger
YWEW. If U(S) < 0, implying that getting rid of his stake has
Bositive utility for him, he will prefer larger negative stakes to
smaller negative stakes, and of course larger prohab1ht1gs of’
losing the stake, The relations are shown in Figure 6. Since In
this plane & - (1 - ¥)Z2U(E)Y the preference is for the offer
whose indifference curve is to the right of the carves for other

alternatives in the set.

2. Positive Prize. When U(P} ce
E < 0K - (1) U(S), we have an inverse of the situation for
positive stake place. When -U{8) = U(P) the pro.bablhty of win-
Bing is irrelevant and there exists a vertical indifference curve

=K, K>0, and hence
n for a
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(m:rll curve), as in Figure 7, which is the intersaction of the
Prize plane with the null plane previously defined. As with the
Zer(? prize plane, one offer is preferred.tﬁ% second offer if
the indifference curve through the fir3tlies to the right of the

indifference curve through the second,””
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3. Negative Prize. (U(S) < 0). This situation is a transla-
p ST T . : :
tion of that for positive prize, with the null line and the indif-
ference curves displaced to the left of the origin, as indicated
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in Figure 8. The null line is located at U(P)
erence relations remain as before.

-T{8) = B, Dref-

1l

Fig, 8. .7
g £

S 3}
NN

D. Probability Constant. Settingt = K yields a plane nor-
mal to the 1-axis, with i constdht throughout, which will be
referred to as a pnp@apakgty”g@' iy Fpriny = 1 (the certainty
plane), the player is indifferent as between stakes—he's zoing
to win anyway. His pref€rence is strictly for a larger prize;
hence, the Indifferenceetrves are straight lines, parallel to the
U(S) axis. For i =\~Qi"(the certain-loss plane), the player is in-
different as hetwgen‘prizes: he can't posgibly win, His prefer-
ence is for the smallest possible stake; hence, the indifference
curves are stedight lines, parallel to the U(P} axis. The two
situations' 4re represented by Figure 9.

It is\dS8umed that the transition from the certain-win plane
to thefertain-ioss plane is continuous, The nature of this
tragsitior is described as follows. (We are indebted to Charles
LA Hubbell for this development. )

\ ) The player is indifferent as between all situations having the
Same expectation of gain;

E =Yu®@ - (1 -y)us)
Solving for prize and stake:

=
@
i
fe s
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For fixed i {i.e., for a given’pl:obability plane), these are
Straight lines, In particul@r, the line through the origin (E = 0)
tonstitutes a boundary Hetween willingness to play (E > 0} and
reluctance to play (B «°0). All indifference lines in the same
¥ plane are parallélz,to this, having the same slope. Regardless
of _the value of },Q,\ihe boundary-cof-play line passes through the
bomt (U(P) = gy U(S) = 0).

I ¥ isalleWed to vary, this boundary-of-play line rotates,
as Sho“ﬂ}\in\figure 10, where (+) and {-), for each boundary-
Of-playJdipe, indicate "play™ and 'no play' regions. This rotat-
Mg lifte ‘moves from =1 to ¥ = 0, as it rotates. In so doing,
'SWeeps out the indifference surface for E=0. At ¥ =1, it
'S CBincident with the projection of the U(S) axis, and at ¥ =0,
With the U(P) axis. This is shaped something like a circular
Staircase, as in Figures 11 and 12. For E =0, it is the
boundary—of—play surface. .

I 0, then (U(P) = E, U{S) = -E) is the axis of rofation,
All such axes lie in the null plane, all peints of which satisfy the
€Xpectation equation:

E = YU(pP) - (1 - ¥)U(8)
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as was indicated ubove,

The generution of cach indifference surface is exactly simi-
lar to that for the boundary-of-play surface, with U(P) = E
U(S) = ~E aa the axis of rotation, Hence, all indifference sur-
faces are similur, Since each is completely described by the
regular motion of a straight line {the generator), they are
known, mathematically, as ruled surfaces.

These surfaces actually have two sets of rulings, The other
ruling, for the boundary-of-play surface, has as its axis of ro-
tation, a line in the probability plane ¥ = 1/2, normal to the O\
null plane. The generating line is at all times perpendicular to
the axis, and rotates in such a way that it always passes throsgh
the U(P) axis and through the projection of the U(S) axis on the
certainty-plane. Its intercepts on those lines are emial and of
like sign. For U(P) = U{S) = 0, the generalor comgrdes with
the 1 axis, (See Figure 13.) \

- UF)
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V. SOME EXPERIMENTAL DATA

A. An Ilustrative Pilot Study. A pilot experiment was con-
ducted during the summer of 1952 (This experiment was con-
ducted by David Beardslee and Stefan Vail. The subject was one
of the secretaries for the project,) to see i some of the things
predicted by the model happened, and to serve as an illustration
of the method, For stiruli for the U(P} scale, five objects
were selected which were pictured in the advertising pages ol
a newspaper. These were to be the "prizes" in an :imaginftry

lottery. These stimuli were as follows: ¢\
. N\ .
a - a rattan chair, . N
b - an electric broiler, N
¢ - a typewriter, D
d -~ a radio, “\

€ - & portable phonograph.

The pictures, of course, provided the smt?}ect with a concrete
stimulus which was perhaps more susc\eptlble to constant valua-
tion than the names of the objects are. These stimuli were pre-
sented by the Method of Similarifies [3] and the subject's U(P)
scale obtained. The ogiijam q;u ar%,cg.}.gqrp.re given in Tabie 1

LAY Iau

C;\ Table 1.
Stimulus at ’\éhé,ir Broiler Typewriter Radio Phorograph
Head of
EScale & ? b ¢ d ¢
\“ a ) ¢ d e
Redm’{tmn of
Palrea‘CDmpan— b € ¢ ¢
gop*Judgments c d d e d
~Jo’a Rank Order
/1 8cale d € b b E
a a a

71 e a

H is to be noted that these five I scales do not satisfy the
same simple order. Three are consistent with the ordering of
the stimuli 2 b ¢ d e from low to high in utility, and two are
consistent with the ordering a b d ¢ e.

At the end of the experiment, however, the subject was asked
to place the stimuli in rank order and the obtained rank oxrder
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was a b ¢ d e. Aluso, the data of a later experiment in which
these stimuli scrved as components of uncertain offers are com-
patible with the ivpothesis that the proper rank order is & b ¢
d e,
The dala also contained the metric information that

ab >be

cd > de
that is, that the difference in utility U(P) between stimuli a ands
b was greater than the difference in U(P) between b and e; and

LRt

the difference in U(P) between ¢ and d was greater than the)y
difference between d and e. O

Time did not permit the determination in this pilot experi-
ment of a scale on some probability stimuli, so exgli:cf:it objec~
tive prohabilities were used in constructing offers,\and it was
assumed that i = objective probability. The probabilities used
were .10, .30, .40, .60, and .70. This ¥ scalejin combination
with the U(P) scale above defines 25 offer%ﬁ the product
space, of which eight were selected for stady. Two additional
offers were made up by combining "hoth*a and b" as prizes
With two of the probabilities. wadwtdbraulibrar org.in

These 10 points are shown in. Figure 14, whicg represents a
stake plane, It must be kept intmind that only the order of
stimuli on the two axes andcertain metric information is actu-
ally known; although the jllustration is drawn as though the

points had known nume\nsi:cal values, such is not the case. The

stimuli F and 1 in the space have been located ordinally on the
U(P) axis from metri¢ information contained in the data. They
were not located’afr'the U(P) scale empirically as they might
have been, K72

The offers were presented to the subject for judgment by the
Method of(Triads. The responses of the subject are given in
Table 2. f‘This tabulation was arrived at as follows. The subject
WaS«E‘T?—'Sented with every possible triad, of which there were

{13 WM 120, and instructed to judge in each triad which "chance"
she would most prefer to take and which least. The game was
free, the subject had no stake, i.e., U(S) = 0. ' '
For example, E, H, and I constituted one such triad, In this
triad the subject said she preferred E the most and 1 the least.
This was tabulated as three paired comparison judgmepts,
E>H, E >1, and H > 1 (where the symbol > signifies pre-
ferreq to). Each of these pairs occurred in eight tr?ads, ‘n-z,
and hence each such paired comparison was made eight times.
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Table 2,
N4
A BETER C 5C E 3 D, H 8 F,HS8
A;g,)i 8 B, D 8 C, F 7D, I 1] 7TFI1
A 8 B,E8|{7CG1 D,J 8 F, 78
JA,E8 |8B,F 8 C,H 8 E,F G, HS8
24,76 |1BGT7|8cC1 7E,G1| 8G,I
/) AGS B,H8|7C, JT1|8FEH 8G, 7
AH8 |8B1I D,ES| 8K, I 8, H, I
2A, 186 (2B, JT6| 3D F5&6|8E,7T 8,K, J
A, T8 {8CD D, C 8§ F,G 8 1,78
*To be read "mo judgments of A preferred to B, eight judgments

of B preferred to A."

The tabulation of these eight judgments for each pair is con-
taired in Table 2. It should be noted that there are two
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judgments made on a triad which are here decomposed into
three which are consequently transitive. Thus, on the average,
there are only 2/3 of a degree of freedom associated with each
paired comparison judgment. But the eight times each judgment
was made accumulates these degrees of ireedom so they may
be regarded as having five and one-third degrees of freedom
per paired comparison, assuming the successive presentations
of triads are experimentally independent., )
Table 2 reveals that an offer to the right or above another N
offer in the product space is preferred. There were eightqen\
tomparisons of such pairs. On three of these pairs the judps
ments were inconsistent: 7 C, G 1; 7 E, G 1; and TEW 1.
According to the theory these should all have been 8¢and 0.
The other 15 pairs were all consistent, 8 to 0, andas predicted.
Another experiment was then run on the samesubject using
just five stimuli and the Method of Paired Compdrisons but re-
Peated under conditions of a stake (imaginary)'of $1, $10, §$15,
and a negative utility for stake (a studio dofich which the subject
Wanted to get rid of but which would ¢ast.money to have hauled
away),
The stimuli used are indicatedyigiwRignndibbarAbiganh stake
the subject made 10 paired comp@risons, In each instance the
10 paired comparisons were tfansitive so the data are given
below as a rank order in Takle 3.

X\
\ N\ Table 3.

N Siare I Scale
;\';N $15 ABCDE
N 10 BACDE
\ 1 CDEBA
O Studio DEC B A
Couch

These I scales define certain "pieces” of indifference curves
Which are shown in Figures 16 - 19. These figures represent
only order relations and some metric information. Innumerfa.ble
transformations on the axes are permissible, so the shap_es in-
dicated for the indifference curves represent cornfidence in the

heory rather than experimental demonstration of it.
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B. Experimental Tests of the Shap
d MiHoliand have ob-

:I;.iielgotﬁe exten‘sive study, Coombs an
were ablg ET;QEI'ICS of the ¥ and U(P) axes, independently, and
show that there existed at least one convex indif-
wvidbrapli brmsther study (6],

fer
ence curve for one of their subj ot
tthe existence of convex in-

giljlege found additional evidence
ference curves, N\

c.
Mosteller and Nogee's Experiment. Mosteller and Nogee

i‘::;;i;;ot?ed [8] an ekperiment which may pe analyzed in
number of 15 th‘ﬁ'OI‘Y-’ \They presented their subjects with a large
ther or n tpossxblg;bets, and for each allowed him to chooge whe-
), and fo to aﬁi\ct?pt the bet. They selected 7 odds (7 values of
COilStant ?ﬁ' eacli they offered several different prizes, with stake
fimes. Ti p.ghout. Fach opportunity to bet was offered gseveral
permit THis'is the Method of Single Stimull mentioned above, and
Pe '“\th%omy location of the subject's E = 0 indifference surface,
de', fn% boundary-of-play surface, (Since stake is constant, they
for U (Slned only an E = 0 indiiference curve, in the stake plane
for eact?ﬁ)') The general situation 18 Showl in Figure 20. Since
times. 1 value of i/ several prizes were offered, each several
of aves hey could compute for each W a cumulative rfrequency
the betptance of bet" curve, and they took the pr?ze for which
indiffe would be accepted 50% of the time as defining the E=0
Cumm:t‘?nce curve. {See Figure 21.) If there were no error, the
i ive frequency curve should have the shape showm i

gure 22, They assume that psychological probability, Y, is
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linear with obiective (and experimentally explicit}) probability.
They obtained numbers by assuming that utility, U(Pg) = 0, and
that utility of stake, U(Sﬁgf) = 1.

Then by axzsuming the 'E = 0 indifference curve to be a trun-
cated rectangular hyperbola (YU(P) = E = a constant), they were
able to compute the relation of monetary value and U(P). The
relation between these two they plotted as the utility of money.
Further portions of the experiment dealt with preferences be-
tween two aiternative bets and the percentage of times compound™
bets would be accepted. They predicted {on the basis of the first
portion of the experiment) the percentage of times one offer or)
the other would be chosen, or a compound bet accepted, by n5ing
the explicit objective probability, the experimentally detérmined
U{P), and computing an "expected utility." 2.\

There is some evidence [5], [6] that ¥ is not alinear func-
tion of the objective probability. In this case the\procedure used
by Mosteller and Nogee no lenger yields a unigie solution for the
relation of monetary value and U(P). \\

D. Experiments on the Relation Bgt'weén Y and Objective
w. Preston and Baratta, [} diave atiempted fp deter-
mine the relation between cobjectiveiprobability and ¥. They had
their subjects bid for prize-prgbability combinations which were
then played, This is a variant of the pay-to-play situation in
which the price to play is,defermined by competitive bidding.
Since this situation involves assumptions about the comparability
of ¥ and U(P) scales for different individuals, no attempt is
Mmade to analyze theirtesuits here. They did find that the func-
tion relating objeefive probability and ¥ (computed from group
data) was relatively invariant over changes of prize. A similar
unction Was\:dbfained by Griffith {7] in an analysis of horse-
race bettifgy" He also observed that for a large number of indi-
Viduals, bffers, and times, the boundary-of-play surface approxi-
mates{the objective zero expected value,

Edwards [5] in a study of choice between offers varying in
¥, U(P), and U(S) found a function relating group data on ¥ and
Objective probability which, like Preston and Baratta's, was in-
variant under changes in U. The nature of this function is very
different in the two cases, however. Unpublished analyses of the
data for individual subjects of Edwards suggests that grouping
the data in studies of this type masks large individual differences

In ¢ angq U{P} scales.
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VI. SUMMARY

This chapter has presented a general system designed to or-
ganize the field of decision-making under uncertainty and te
suggest experiments in that domain, It attempts to clarify the
differences between certain situations, and suggests explana~
tions for differing behaviors. A number of exXperiments in the
field of decision-making under uncertainty have been analyzed
in terms of this theory. N

KoY
7'\
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CHAPTER XVIII

ENVIRGNMENTAL NON-STATIONARITY IN A
SEQUENTIAL DECISION-MAKING EXPERIMENT

by
Merrill M. Flood™ O\
COLUMBIA UNIVERSITY O
1. PROBLEM A\

The pilot experiment reported here was st\imulated in part by

some results discussed by W. K. Estes.? Qne such result is the
following: In certain two-choice situatigns; where the reward

Probabilities are 7, and 7y, some o 'a:iiﬁn%s will tend eventu-
"8l l’i'illl-'tivofg

ally to choose the ith alternativgwmﬁh~ pro pl,'léli\’eﬂ by
1-m &N X

=3 where i# j

2-7?'1-;1?‘2’ ‘

ad

For example, Estes (DP,)zmréferred to a case in which the reward
Probabilities were 7y 20,5 and 73 = 0, and the average p; of
Several human subjeCts was observed experimentally to be 0.67.
Estes stated that\fofmula (1) fitted all his data well, when aver-
aged ogyer enoug.Q'Subjects and trials, and remarked that it was
deriveq fromsa, &ystem of mathematical axioms forming a basis
for learning\‘ eory. _

. After Bstes had presented his paper, various game-theorists
1n the .&4d~iénce argued (incarrectly) that this observed behavior
Wais’lerprisingly "jrrational,” since the organism's proper
Strategy is clearly pure, rather than mixed, and so the organism

ms started while the author was with The RAND .
Corporation, under Project RAND of the Department of the Air
Force, 1t was completed at Columbia University, under the Be-
havioral Models Project of the Office of Naval Research. Jam
indebted to Mrs. Marian Centers,of RAND, and to Mr. N. R.
Stanley of Columbia for assistance in the preparation of this
report,
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should learn eventually to choose only the alternative providing
the more frequent reward. The present writer countered this
game-theoretical argument with the following two objections:

(a) The proper definition of payoff utilities would be upclear
In attempts to apply game-thecretic arguments to 2 rezl case,
and there is a reasonable payoff matrix that would rationalize
the reported behavior, Thus, if the organism's object were to
maximize its score rather than its expectation, then it should\
sometimes not tend to use a pure strategy. For example, ohe
intelligent subject in a punchboard experiment conduc(ed\bi? the
auther (1952) remarked that her only hope to get a "peffect"
score in a (90,10) experiment would be based on plagifig 20 in
the 90-case and 10 in the 10-case and being lueleon ‘each play,
Hence, if absolute perfection were assigned s'uﬁi’(:iently high
utility, her optimal behavior, even in the gathé<theoretic sense,
would not be to always choose the same case. Of course, this
Same argument might suggest that she should use a single-choice
strategy in a (50,0) experiment, hutDaly' if she is thoroughly con-
vinced that the other response will always be non-rewarded, At
any rate, a defense of the mixe;lféhoice behavior can be made
along these gene{‘-.fa\,\l:\%fi.aglsaulib,rér‘y,'org‘in

(b} The von Neumann-Morgehstern game theory is inapplicable
in this situation unless the Bx‘ganism can assume safely that the
experimental stimulusui{;’ generated by a stationary stochastic
Process. For examplg,)if the organism believes that there may
be some pattern (nopo tationarity) over time, in the stimulus,
then it can often’dpbetter by using a mixed strategy rather than
4 pure one, forithe iatter would give it no way to discover any
pattern effegh.At present, mathematical game theory and sta-
tistical deeislion theory provide no generally accepted prescrip-
tion Df‘ Imal behavior in the non-stationary case; indeed, it is
quite, 'E,’once:ivable that organie behavior will be found to repre-
sepfisuch a solution if and when it is understood, In response to
tm:n'query on this point, Esteg paraphrased the instructions given
te’his subjects. 1 seemed significant that he had not tried to sug-
gest to them that they were, in fact, being confronted with a sta-
tionary process. In the author’s experiments, on the other hand,
we had emphasized very strongly the exact nature of the station-
ary process (see Appendix A) confronting the subjects,? and it
had seemed to us that this fact had helped the subjects go to pure
strategies. We conjectured, therefore, that the pure type of be-
haymr would be found in subjects who were convinced of station-
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These issues were much discussed during the Santa Monica
Conference, and there seemed to be agreement that the matter
was worthy of further experimental investigation.

R. R. Bush (DP) offered a theoretical explanation of the pure
and mixed cases by showing how the Estes formuls (1) is ob-
tained by assigning certain very special values to the parameters
in the Bush-Mosteller [1] mathematical learning model. Bush
also derived an asymptotic mixture formula for the r-choice
Case, and. with G. L. Thompson (DP), has remarked on some. of \
the pertinent experimental questions. The Bush r-choice for-

mula is RAY.
'\
1 G
@) by = —= o for(i=1,2,-.0n)
i ~N
=1 1-m; \
i PN

where p; iz the eventual probability of‘th\:g drganism choosing
the ith alternative, and #; is the probability that the jth alter-
hative will be rewarded. %ormql@&?{]ﬁ?’ﬂﬁi@%‘?%&éﬁﬂm the Bush-
Mosteller model in [1] on the assumption that if the ith alterna-
tive is always rewarded (non-zéwarded) then p; = 1 {0). ‘

The punchboard experimefits to be discussed here include in-
Stances in which r = 2 and\® = 9, so they provide some data that
are relevant to the quesfibh concerning the applicability of the
bure and mixed mogels\discussed by Bush and Thompson (DP).
In barticular, we pfégent the results of a pilot experiment c.arrled
out in an effort\dddevise a test of the hypothesis that behavior of
human subjeet{iz’s mixed or pure according as they are or are not
Convinced of'gion-stationarity in a situation that is actually sta-
tionary, \,x“'
O 2. EXPERIMENT

The equipment and procedures used were e)_tplained in written
Instructions given to the subjects before the trials began. The
set of instructions used in the initial 9-choice experiment, where
Stationarity was stressed, are summarized in Appendix A. ’I‘het
Set used in the 2-choice experiment, where statmna_rlty was no
Mentioned, is indicated in Appendix B. The reader is _referred
to these two Appendices for information about tf}e e.qulpment and
Procedure uysed, and familiarity with this material is now as-
Sumed,
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In the 9-choice case, the reward probabilities were each
chosen at random on the interval {0,1), In the 2-choice case, the
ten pairs of reward probabilities were chosen arbiirarily so as=
to provide information on pairs scattered rather evenly among
all possibilities. The equipment was identical in the two cases,
and even the same codes were used, except that the subject was
limited in the 2-choice case to choices between a pair of ccl-
umns specified at the top of each code. The actual values for
these pairs are indicated in the following table:

CodeNo.=| 1| 2| 3| 4| 5] 6! 7{ 8} 9N

100 7; = |51 |76 |55 40 |80|56 |98 7992 | 96
100 75 = |24 (09 [09 | © |30 |44 |490\59 [ 69 | 17

In the 9-choice case there were 10 subiec\ts and each did the
same 10 punchboards with 100 choices on each. In the 2-
choice case there were two subjg(z,té; ‘one of whom had previous-
ly done one punchhoawd: filtowihgafheoimstructions of Appendix A.
All subjects were unfamilia?qv{rith game-~theoretic noticons.

"y Y

8. HYPOTHESIS

Data are rathgr meaningless, of course, except as they are
interpreted with réspect to some well-defined hypothesis, In
this instance( the hypothesis is: Behavior is asymptotically
pure or mlxéd according as subjects are or are not convinced
of nonﬁ{ationarity. As one way to begin testing this general
notign; a comparison is made of the frequencies of later choices,
in each response class, with the asympiotic frequencies that are

’op{'e}:{icbed theoretically by the Estes-Bush formula (2) for p; in
the mixed model. i

There is a reai difficulty in knowing what "later choices"
should mean in this context. For example, if 79 = 1, then the
mixed model predicts that py = 1 whenever 1y < 1, even though
a subject would probably show very different behavior over a
large sample of early trials according as 71 is close to zero or
close to unity, Furthermore, it is quite possible that subjects
may behave according to the mixed model for a certain period
at the‘beg:inning and switch to the pure model after their early
€xperience convinces them that the process is truly stationary.
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We shall be 1nlerested in comparing three quantities, com-
puted from the obscrvations, with the theoretical value P = py
correspording 1o the column z for which 7, = max 7. First,

i

we let ¥y denote the relative {frequency of choice of celumn z
during trials x through y, Next, we let ¢ denote the number of
the last trial in which column z was not chosen, Finally, we
consider F%OU, FY, and F]‘i?o as estimates of P.

The use of F‘l‘ is an estimate is justified on the ground that
the subject can not have gone to a pure strategy before trial ke S
and so FE for x< ¢ represents the relative frequency of choos*
ing columin 7 just prior to the change to a pure strategy if ¢his
change did in fact occur after trial c. Of course, Fy has.a
downward bius due to the possibility that the change 0 apure
strategy may in fact have occurred several trials diter trial c.
Since P is supposed to refer to asymptotic beha¥ior, we should
prefer to choose x large in calculating F§ buhthis has not been
done here simply because the condition X <€ is often incom-
patibie with the requirement that ¢-X be'lafge enough to pro-
vide a suitable sample size for the cafeutation of F&.

It might be possible to make obsgryations more directly con-
cerning the subject's state of beliehwithippEATH- g Flationarity,
Perhaps even by asking him aitéreach trial Ther# is he ob-
vious danger that such queries'might alter the experimental
stimulus and thus affect tifésresponses, Some of this danger
could be avoided, conceivably, by asking all questions at the
clese of the work by és}:ti subject, and this has somenmgs been
done. We hope to dpproach this guestion more directly in future

€Xperiments, N/

N 4. RESULTS

..:rﬁé’data for the two-choice case are sumrnarize_d in Ta_tble 1.
The )choices of subject FD do not seem clearly ‘-'X.phcab—le .
terms of the mixed model. For example, all of his chomes‘ on
his last board (Code 6) were made on a column tbat gave‘w?es
on only 56% of the trials. One possible explanation of thiS nd
havior ig that he set a standard of 50% wins as satzsiactorg itn
then did not search for a better column as long a8 he felt ta.fi
this standard was met, as was the case on this la.st‘b‘:m‘rdth tegf
the sixth trial, A fact consistent with this ?szanatmnh}z fifst
his continued effort (42 attempts through trial 89) Onf \:rhile the
board (Code 4) to win on a column that never paid of
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Table 1
Stationarity Unspecified (2-Choice Case)

Code No. =| 1| 2| 3| a4l 5} 6f 7| 8| 9{10
100 P =| 61| 79| 66| 63|78} 56| 96| 66| 80 95
Subject MS Q
106 F%Uﬂz 54| 571 771 33|70} 63|100| 66 | 93.{ 97
100 ¥§ = 39| 48| 76| 3368 61| -- 66‘3’82\ 92
¢ = 79| 83{ 94/100 | 95| 95| - 140,738 | 38

Subject FD NN
100 F}%=| 40| 96| 75| 58 | 72 |100]460 | 97 [100 | 89
100 ¥§ ={40| o] of 5118422 | ea|--| 0
c = 100| 4|25/ 86 34 -] -| 52|~ |n

N Y

better column was p\é.\’j,\r‘:'{ﬁ\’gdgﬁa figgisa{ﬁ(égl Balt of the time. These
possibilities are typical of the experimental complications that
arise because of the p%r@icular psychological set of the subject
at the start, ¢ )

Subject MS, on ﬁ‘ne\other hand, seems to have performed in a
manner quite coisistent with the mixed model, as judged by the
close agreement/between P and F}OO. His seventh board {Code
4) is a notgk{le'exception, however, and it is a surprising fact, in
this connegtion, that he devoted his last 28 trials to a choice that
always~failed and that had always failed on his previous 39 trials
withy{t> Tt is significant that he kept trying both columns well

”Ehrég'ugh all but two of his beards, and that he remarked during
\?d after the experiment that he was convinced that there was

omeé sort of pattern and that he might find it if he kept on hunt-
ing for such regularities, If it is supposed that this hunting ended
soon after trial ¢, then one would expect that F{ might be in
even better agreement with P than is F%Uo, This seems to be
true for subject MS, except for his ninth board {Code 1} and is
further evidence of consistency between his behavior and the
hypothesis that the mixed model applies until the subject believes
that the process is stationary,
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Table 2

Stationarity Specified (8-Choice Case)
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D

100 F}OO for Subject:

Code | 160 P
1 2l 3| af 5| 8| 7| 8] 910
1 57 90| 81] 26| 141 77| 74| 96 100 12| 75
2 55 | 81| 86! 22| O 0] 96| 0164 0
5 | 41 |es| 83| 30| o} of 68) 12|85 %P1
s | 1o |o7| 78l 54100 | 57 (100|100 | O\ 6 | 88
5 . 35 |50] of 14 7|88 alles| 5|
6 | 29 4l a0l 28| 23| 15| 80050 | 85 | 12 | 64
7 56 |97 of 14] 1 n\x’g} 0|48 |36 3
8 55 hoo|t00| 14| ofate) of 11| o[30| O
9 57 1 46|100] 92| _@\10o| olw00} 0 37895
10 | 58 |97] © Qﬂ:'f"’% 4 wliPrasy|eee a5 | 24

A
O 100 FJO for subject:

cote 100 R’." | 2] s| 4| 5| 6 7} 8} 910

— S
1 |57 | s6[100| 52| 14]100| 98} 96 1100 12 | 74
2\Y 55 |o98| 82|44 O Of O 94| o0{12] 0
O3 | a1 |sa| 98| 60| of ofwo] 6]00) 0 100
; 4 | 100 1100|100 100|100 [100 (200 ol o} 6100
5 35 64| 0| 81 14[100 ol o]301)10| 868
6 29 ol s0| 46{ o 16j100] 96 100 | 12 {100
1 56 |100f of 8] 2| O 100l of48) 0| 6
8 55 |100|100| 14| 0 (100 ol 14] oj52] O
9 57 6s|100| 86| of100f © 100! 0} 6|94
10 53 [100] oj100| 0100 100 | 100 j100 | 24 | 44
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The data on subjects 1 = 10 in Table 2 are rather difficult to
interpret in the light of this central hypothesis, Certainly, thore
is no very striking agreement between P and F}OO. It does seem
to be the usual case that the subject is still choosing columns
other than the best one through most of the 100 trials in each
game, and the subjects usually fail to settle down on the very
best choice within their hundred trials. Of course, it may he
argued reasonably that the early trials in each game should not
be taken too seriously in an investigation of asymptotic behavién
For this reason, the F% 0 data are included, buf here too the jn-
terpretation is difficult, <\)

One source of trouble in the analysis of the 9-choiceCase is
the similarity between the 7, in some instances, thatupiakes it
difficult for the subject to discriminate between such'similar
columns. For example, in Code 7, the three Iar;gcés't values of
100 7; are 98, 95, and 90, so that it would notbevat all surpris-
ing if a subject were to spend some of his cholces on the 959
column that the mixed model would allocate to the 98% and 0%
columns, Consequently, in an effort ta mi igate this confusing
effect, the data were regrouped for analysis by combining col-
umns having comparable 7i valuest\The (arbitrary) rule for
this regrouping consistaduofl menitiving alf data for those columns
whose nj values differed by 784, or less from the max 7; into a
new column 1, then similarly forming a new column 2 including
all those columns whose, f;\Values differed by 7% or less from
the max 7; not already inéluded in the new column 1, and con-
tinuing until all the po\iumns were regrouped. If r} denoctes the
number of new coldnins formed for Code §, and wf( denotes the
mean of the sebof/r; values represented in the new column k of
Code §, for k2, 2,-« ., rl, then, in accordance with the mixed
model, thga:symptotic frequencies of play pi{ {on new column k

for Codesjiis given by the following expression:
N 1

..\’.

1-1
P = —
()pk o

for (j‘_“l;z!"', 10;]:(:1’2’--. rj)'

1
QZ::I 1 '“Q']

Table 3 presents g comparison of the theoretical values of
Py, as obtained from (3), with the relative frequency of choice
of new column 1, in all 100 trials and in the last 50 trials, re-
spectively. The average relative frequencies were computed for
all but Bubject 9, whase data have been omitted because his se-
lections differed very greatly from those of the other Subjects.
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Table 3

Yiationarity Specified {Grouped 9-Choice Case)
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Code| 100 P Mean 100 300 for subject:
100F11234567810
1] 74 70.4 90! 81| 26| 14| 771 74| 9611001 75 A
2| 67 31.7 g1|s6|22| o] of ofe6l O A
3| 52 45.3 6| 83| 30| o) o] 681 12| 8516I
4 1100 74.9 g7 | 78| 54 [100| 57 {100 10“{;’5’«‘0 88
5| 47 | 640 |86|94( 25 7} 88 qufidt| 27 77
6| 39 43.2 4j 40| 28] 23| 15 ‘80:50 85| 64
ol 63 | esa |o0| 98|33 1|cbDf oz 99 48 4
8 | 68 sa7 100 |100| 41[100}100]100 25 100} 96
91 69 96.0 75 (100 96{'9;8 100 b100 (100|100 85
10| 85 | 879 |97 ';JQ"::?E“WQ%""S%TT%"-@% 100 | 33
S
Codel 100 p! Mean \ 100 F%?O for Subject:
110‘{);51%?0 727 5] 4] 5] 8] 7| 8 10
1| 7a _[p80.2 | 86100 52| 14|10 100| 96[100] 74
2 GQ 35.4 os| 82| 44| 0| o 0|94 O 0
3,.[\52 co.s | sa| 98| 60| 0} of100| 61100 100
{37100 | 880 100100200 100|100/ 100(100{ 0100
5| 47 21,3 |100{ 94| 30| 14[100 100| 84 30| 90
6| 39 56.4 ol 50| 46| 0| 16100 961100100
7| 63 6.9 1100(100| 46 2100 100({100| 48| 6
81 68 g5.8 |100|100] 50100100 100| 30{100! 92
9| 69 o84 |100|100| 94| 98]100|100 100(100| 94
10} 85 94.4 |100(100 (100|100 IEI_O‘_l_li.O_IOO 100 50__
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It would be difficult to argue that the data in Tahle 3 confirm
the hypothesis of behavior in accordance with the mixed medel,
but even more difficult to argue that they contradict it. The
author's view is that a much more extensive experiment is nec-
essary before any real conclusions can be drawn. The most
promising approach seems to involve beginning with a 3-choice
case, in which the 7; are rather evenly spaced and not too elose
to 0 or 1, in order to check on the closeness of agreement with
the Estes-Bush formula (2) for Pi- \

The author would not want to undertake the problem of deter-
mining the precise nature of the experimental stimulus,n@ééssary
for producing this kind of difference in behavior until €Xperimen~
tal techniques were good enough to give repeatable dndl\constant
results, for the 3-choice case, in agreement withy&ither the pure
or mixed models—and only if this stimulus prdblem were under-
stood reasonably well would he again want touwork with the r-
choice case for r >3. It is hoped that expe&‘*iénce in the crude
pilot experiments reported on here may.Be‘of some use to others
who are interested in this problem of ‘\ifhéther to accept the pure
model or the mixed mode!l of learning*behavior.

www.dbra}ﬂh’l&raryorgin
APBENDIX A
Instructions £or" Static-Nine Experiment
&)

A. Static-Nine. "

1. The equipmén’t for static~nine consists of a "punchboard,"
a "punch,” a "c:oae," and a "register,” The code and register
are printe{i.\f'gﬁ‘ms fastened to the back and the front, respective-
ly, of thepunchboard, The punch is used on each move to make
a holeQ ip\the register signifying the choice of an integer from 1
thrpu\gﬁ'g. Samples of code and register are attached to these
insj;r:uctions.

2. The register has 25 lines, and in each line the integers 1
through 9 appear in four "fields" across the page; this provides
for 100 moves.

3. The code has either a 1 or a 0 in each position. A 1 de-
notes a win and a 0 denotes a loss, The code is arranged so that
the mark 1 appears a preasgigned number of times in each col-
umn. The order of the marks 1 and 0 in each column is random.

4. The first move is made by punching out cne of the nine
digits in row 1 of field 1, Fa 1 is seen through the hole this
position is circled in pencil by the player to denote a wirn,
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otherwise it is left uncireled to denote a loss. The second move
is made similarly by punching in row 2 of field 1, and circling
todenote a 1 if observed, After the 25 moves in field 1 are
completed, start at the top of field 2, and continue in this way
until all 180 rows have been punched. The score on these 100
moves is the total number of cireled positions,

5. Alter you have made 100 trials, you wiil give the umpire
instructions for your plays in the next hundred trials, Youdo
this by assigning to each choice, 1 through 9, a number indicatifig
how often you wish that choice played in the next 100 trials. ,The
nine numbers must add to 100. For example, you might agsign
20, 32, 13, 10, 25 to digits 1, 3, 7, 8, 9 respectively, and zeros
to the others, indicating that you want digit 1 played/20 times,
digit 2 played no times, digit 3 played 32 times, €e.; In par-
ticular, if you wish to have some one number (say. 3) played ail
the time, then you would assign 100 to that o€ and zero to each
of the others. These numbers should be wgitten in the row pro-
vided on the data form for this purpose,& * _

B. Your object is to get as many Wihg’as you can In
rows, i

"
N

B. General Information ' wrww dbraulibrary erg.in

1. This is an experiment’désigned to abtain a quar‘ltitative.
comparison of the ability of people with that of rats in learning
to play a certain simple/intellectual game. Bush and Mosteller,
at Harvard, have sxamined experimental data obtained by psy-
chologists in thejb.Studies of rat learning. They have fleveloped
a mathematicahmodel that seems to fit the rat data quite w?'ll.

I am using, fhis model, which they have call.ed the ."stat-rat, Eo
Compute\t\ha‘ probable performance of rats in playing vontNetuth
mann-Morgenstern games, The scientific purpose 18 tod ?js e
Val,i(i{f&" of various mathematical theories of learning and de-
eigion, )
’ ‘52 The punchboard represents 2 mechanical umpire who d_e—
termines wins and losses in the following manner. The umpire

.50
first chonses nine numbers between 0 and 1 (for ‘}lean;ﬁlij’f a’55 0
or .,378) from a random number table; these are thoug .
i r choices of 1 through

probabilities Gy, G, * « +, Gg that you ) _
will win, Each 1t:ime2 you play a number (say 3) the umpire iif;lg
mines whether or not you have won by applying th’e ;;rrzsiﬁ ses
probability (Gg in this case) to make the decision; Tigus £ the

a random number table for each of those d§c151ons.700 yo,u might
probability Gg that your choice 3 would win was .7

the 200
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expect to win 7 times out of 10 when you choose the number 3¢

3. For the second hundred trials the umpire simply multiplies
the nine numbers written on your data form by the corresponding
probabilities Gy, Gg, . -+, Gg, and adds these products together
to get your total of wins on the second hundred trials. Qf course,
this computational procedure produces the same result as the
one that you would expect to get if the umpire actually went
through the second hundred plays for you one by one, )

4, We should like to have you play static-nine several tinfeb,
Your average score for all your games will be compared with
that of the stat-rat, and those of the other subjects in thig £%
periment, You will be told the stat-rat's score after eaeh game.
At the conclusion of the experiment, I will send eacK Subject a
recapitulation of the names and scores of all plag@fs, including
the stat-rat,

9. Thank you for participating, and good lacle.

>
APPENDIX B\
Instructions

www.dbralﬂﬂér.ary,org,in

3

A, Static-two

1. As in Appendix A, paTagraph Al,

2. The register has 25\ines, and in each line the integers 1
through 9 appear in Qm‘"'fields" across the page; this provides
for 100 moves. Af'he top of each register you will find two
digits written in.\red; you are to punch only one or the other of
these two on e@ch trial.

3. The code has either 2 1 or a 0 in each position, A 1 de-
notes a ?@wand a 0 denotes a loss,

4. The first move is made by punching out one of two digits
in rowa1 of field 1. If a 1 is seen through the hole this posi-
ftounis circled in pencil by the player to denote a win; otherwise
itus left uncircled to denote a loss., The second move is made
similarly by punching one of the two digits in row 2 of field 1,
and circling to denote 2 1 if observed. After the 25 moves in
field 1 are completed, start at the top of field 2, and continue
in this way until all 100 rows have been punched, The score on
these 100 moves is the total number of circled positions,

5. Your object is to get as many wins as you can in the 100
moves,
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B, General Information

1. As in Appendix A, paragraph Bl,

2. We should like to have you play static-nine several times.
Your average score for all your games will be compared with
that of the stat-rat, and those of the other subjects in this ex-
periment. At the conclusion of the experiment, I will be glad
to give you a recapitulation of the names and scores of other
players, including the stat-rat, if you wish.

3, Thank you for participating, and good luck.

O\
FOOTNOTES O

P

1. The present volume, hereinafter referred to as :{‘DP), includes
a paper by Estes reporting on these results, ®

2, Even lhough we stressed this point greatlyy it was not really
accepted by two colleagues who, as subjet:;t} in one experiment,
made inferences from the illustrative é’%mple in the written
instructions {and from apparent patté,rris of successes and
failures in early trials) that canngiibe justified on logical
grounds if the assumption of stabiona it atenerpakly ccepted
by them! N

3. Samples were shown t{)neach subject but are not included here.

+8 3
&
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CHAPTER XIX
SOME EXPERIMENTAL n-PERSON GAMES

by
G. XK. Kalisch, J. W. Milnor, J. F, Nash, E, D. Nering
UNIVERSITY OF MINNESOTA, PRINCETON UNIVERSITY,

MASSACHUSETTS INSTITUTE OF TECHNOLOGY, - {\
UNIVERSITY OF MINNESOTA. \
INTRODUCTION A\

This paper reports on a series of experiments.designed to
shed light on some of the concepis importantuin the theory of
n-persen games. Interest was mainly in es of cooperation,
and, in particular, the steps which leadgtér an agreement to co-
operate. Thus the mechanics of bargaiping, negotiation, and co-
alition formation were important featdres of these games. Most
of the experimental games weresfgrmally of the type considered
by von Neumann and Morgenstéth'[4 o PHbpaid ottpis, (see
Sections L. 6 and II and item§Y1], [2] in the bibliography} have
defined various theoretig@hconcepts for such games. Our prin-
cipal aim was to compage these concepts with the results of
actual plays, N\

In addition, thé\bargaining process itself proved to be inter-
esting. Discusgion of various details of this process as it oc-
curred in OuI. :experiments ig included not only to provide the
context in-which the resuits should be evaluated, but to enable .
future désigners of such experiments to profit from our expert
ence, \In particular, it was interesting to observe that personal-
ity differences played a very important role in determining a
Subject’s measure of success in playing these games, The sub-
Jécis were four men and four women, including five college stu-
dents, two housewives, and one teacher, They were a remarka-

bly intelligent and cooperative group. Certainly al! understood
the rules and could analyse their positions as well as could l?e
ined in such negotiations,

expected of persons not specifically tr_'a . ot
The subjects were given chips to use in making the payments in-

volved in playing the games, and at the end of each of th_e two
hich we ¥ i we redeemed the chips for

days on which we ran experiments, :
money. The players who ranked third and fifth on the {irst day

moved up to first and third places, respectively, and otherwise
301
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the relative ranking was unchanged, That this was due almost

entirely to personality differences was apparent to the absery-
ers, This conclusion may also be inferred from the discussion
in section 1,3,

Some of the games had features which distinguished them:
from games of the von Neumann and Morgenstern type [4]. Ons
experiment concerned a game in which side-payments wers not
permissible. In others, the negotiation procedures were formal-
ized (e.g., the identities of a player’s opponents were concealed
from him and he was allowed to bid, accept, decline, or coupier-
bid in a very limited number of ways through the intermediation
of a referee), The construction of a theory to deal with.an un-
limited or very large number of negotiation possibilities is as
yet so difficult that it seems desirable to restrict :?nd severely
formalize the negotiation procedure to the point‘:where a mean-
Ingful theory can be constructed. These expegiments were es-
sentially pilot experiments and served t }I:st the workability of
formal negotiation models, "\

In general, the authors think that fthede experiments were
fruitful and indicate that further experiments along these lines
are feasible and should prove valdable for the further develop-
ment of game theory, Wfﬂédﬂgﬂﬁi@f Hp¥rubh games has had very
little empirical investigationjfor this reason, and because of the
relatively undeveloped status of the theory, the authors feel that
the use of the experimgn‘}sa_l approach is strongly indicated.

. L\
I. COOPERATIVE GAMES WITH SIDE PAYMENTS
NS

1. Description of Games. Six constant-sum games, of the
type studied by von Neumann and Morgenstern, [4] (that is, co-
operativesgames with side payments allowed), were played by
our experimental subjects. Four of these were four-person
gagqés which were played eight times each, A five-person game
‘was played three times and a seven-person game was playved
twice. These games were presented simply by giving their char-
acteristic functions., The players were rotated after each play,
to discourage permanent coalitions. Perhaps the best way to
describe these games is to give a digest of the material which
wag given to the subjects, This is done in the following. Note
that games 1 and 4 are strategically equivalent and that games
2 and 3 are strategically equivalent. Game 3 is just the sym-

metrie four-person game. The five- and Seven-person games
are taken from examples in [4],
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Instructions to the Subjects,

a} General Instructions, Approximately one typewritten page
of general instructions was issued before the subjects started
the experiments proper.

First, the subjects were acquainted with the general aim of
the experiments (*to further the experimenters’ understanding
of the Theory of Games®); the system of rotation alluded to
above was explained, Next, the possibility of forming coalitiofss
was explained. A coalition was stated to have been formec} \
whenever a set of players had decided to act in concert a.\nd'h‘ad
decided how to distribute among its members its commau gain
or logs. Finally, this part of the instructions sought*te ‘empha-
size the aspecis of aggressiveness and selfishnegeithe ‘players
were to exhibit during the experiment; they Were: exhorted to act
only on the merits of the game situation as gueh {their ultimate
cbjective being the maximization of their gain) - without refer-
ence to personal preferences or outcom{s of previous runs.
They were told that modest monetary reéwards were to be dis-
tributed at the end of the experiment.ih proportion to the totals
of points (represented by chips which was the universal mode of
exchange during the experiment)*eayrbd tdipigrthers ladal ac-
tivities, RN

b} Bpecific Instructiens: The “characteristic function” was
explained to the pl ére’as the rule determining the total pay-
ment to each coalition in existence at the end of the game, Fur-
thermore, the gharacteristic function was given to them diagram-
matically (see€"Figure 1, game # 1, for sample}. The players
were told {Hat their objective was to form “final coalition agree-
ments® whieh would determine both a set of players, and the dis-
tributign‘of any gain or loss accruing to the coalitio_n. These
final§dalition agreements were then to be communicated to an

’Hnjpu-e who recorded them, read them back, and ascerta?nfed
that they reflected the will of the group. The latter provision
was necessary, particularly in the case of th‘e S_even—person
game. This type of formal agreement was binding on the players
{enforced by the umpire) but was to be preceded by }niormal and
tentative bargaining which was not binding. In addition to the
formal “final coalition agreement” there also were possibilities
of various well defined kinds of formal and bin‘dmg mtermedlgte
agreements which again could be preceded by _1nformal barg;u;—
ing, and which were communicated to the umpire who recorde

them and enforced their terms,
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Game #1 2 3 4
Coalition A 0 ~40 -20 -20
B 0 10 -20 -40
C 0 0 -20 -40
D 0 -50 -20 -20
AB 60 10 0 30
AC 40 0 0 0
AD 20 -50 0 -10
BC 60 50 0 10T
BD 40 0 0 D 0
CD 20 -10 0 \\Q\ -30
ABC 80 50 20 20
ABD 80 0 ;«"3'\2" 40
ACD 80 100\ O 20 40
BCD 80 4988w dbrauflrary org in’®
Game\a‘ﬁ—%

Coalition A —60,<‘;\~\ Coalition ABC 40
B 5 ABD 10
c @720 ABE 20
Dy -50 ACD 20

~O

B ) _40 ACE 30
Nty 10 ADE 0
<>:"ﬁc %0 BCD 0
AD -10 BCE 10
AR 0 BDE -20
BC 0 CDE -10
BD 30 ABCD 40
BE 20 ABCE 50
cD -90 ABDE 20
CE 10 ACDE 30
DE -40 BCDE 60
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Game 86
Number of Players Payoif to
in a Coalition the Coalition

1 -4

2 0

3 =20

4 20 ™\
5 0 O\

6 30 O

Table I - Coalitions are indicated by the letters, ot the players
they contain, The entries indicate the alue of the
Characteristic function of the coalition on the right in
the game on the top. Games #1 “\&'are four-person
games; game #5 ig afive-person Zame; game #6 is a
symmetric seven-person gange,’

A run was over at the end offl’{’? minutes or whenever there

was no further possibilitnigrud@sirg todorm further coalitions,
if that occurred hefore 10 miinutes had elapsed, The players
Were permitted to includé.in their coalition agreements the al-
lotment of payments %e:sutsiders. {This was never done, how-

ever.} \\
2. General Discussion. There was a tendency for members

of a coalitia@t‘o split evenly, particularly among the first mem-
bers of a.¢éalition, Once a nucleys of a coalition had formed, it

and tried to exact g larger share from subse-

always together), ’

Coalitions of more than two persons seldom formed except by
being built up from smaller coalitions, Further coalition form-

ing was usually alsg o matter of bargaining between two groups
rather than more,
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A result of these tendencies was that the coalition most likely
to {orm was the two-person coalition with the largest value, even
though this coalition did not always represent the greatest net ad-
vantage for the participants; and this coalition usually split even-
ly. Thus it frequenily happened that the player with apparently
the second highest initial advantage got the most of the hargain-
ing. The player with the apparently highest initial advantage
was most likely to get inte a coalition, but he usually did not get
the larger share of the proceeds of the coalition, Q)

Initially the players were more inclined to bargain and wait
or invite competing offers, This remained true to some\éxtént
in those games where the situation did not appear to be symmet-
ric. However, later and in those games which were gbyiously
symmetric, the basic motive seemed fo be a desiréio dvoid be-
ing left out of a coalition. Hence there was lttle\bargaining, and
the tendency was to try to speak as quickly a®possible after the
umpire said “go,” and to conclude some SO of deal immediately.
Even in a game which was strategically.éguivalent to a symmet-
ric game, the players did not feel so)xushed. A possible reason
might be that some players felt they ‘wére better off than the
others whether or not they got inpa, eoalitions, while others felt
that they were worse off whethépyrdhstdbeseppiviptincoalitions.
They seemed to pay little atténtion to the fact that the net gain of
the coalition was the samé to all.

It is worth pointing p@b that in an interview after the runs, one
of the subjects statédd'that she did appreciate the fact that the fa-
vored player did not strike the best deal, When she was in the
position of the fayored player she felt that to demand her Eiue
would seem S0, unreasonable to the others that she wouldn t get
into a coalitioh, and when she was not the favored player, it was
not to her wdvantage to say anything about it.

Pergonality differences between the players were everywhere
in evidence, The tendency of 2 player to get into coalitions

&eemed to have a high correlation with talkativeness. Frequently,
wHen a coalition formed, its most aggressive member took chgrge
of futyre bargaining for the coalition. In many cases, aggressive=
ness played a role even in the first formation of a coalition; and
who yelled first and loudest after the umpire said “go” made a
difference in the outcome.

In the four-person games, it seemed that the geometrical ar-
rangement of the players around the table had no effect on the
result; but in the five-person game, and especially in the seven=
person game, it became quite important, Thus in the five-pe{'son
game, two players facing each other across the table were guite



308 DECISION PROCESSES

likely to form a coalition; and in the seven-person game, all co-
alitions were between adjacent players or groups of players, In
general as the number of players increased, the atmosphere be-
came more confused, more hectic, more competitive and less
pleasant to the subjects, The plays of the seven-person game
were simply explosions of coalition formation.

Despite the exhortation contained in the general instructions
to instill a completely selfish and competitive attitude in the
players, they frequently took a fairly cooperative attitude, G >
course, this was quite functional in that it heightened theirA
chances of getting into coalitions. Informal agreements .\\iféré al-
ways honored, Thus it was frequently understood that twe play-
ers would stick together even though no explicit comhitment
was made, The two-person commitments which wére made were
nearly always agreements to form a coalition, Wrﬂx a specified
split of the profits, unless a third player could e attracted, in
which case the payoif was not Specified, This left open the pos-
sibility of argument after a third party wasattracted, but such
argument never developed., In fact, thé\split-the-difference prin-
ciple was always applied in such cages.

In the seven-person game the elaracteristic function made
coalitions with an evenwagivaul BN YEFeIuch more desirable
than those with an odd numbertef players, With the bargaining
procedures being used, thisymade it inevitable that one player
should lose heavily, There'was a feeling among some of the
players that no individual should lose twice in & row, 8o perhaps
a rotation system wo%id have developed if there had been more
plays. (This was-algo indicated in subsequent interviews).
There was, howe¥er, no tendency for the winning coalition to
bay any compensation to the loser,

The s hs;bf;uent discussion will be based on the assumption
that the \(klity of an outcome to a player, in the sense of von
Neumann'and Morgenstern [4] is directly proportional to the
number of chips won, Of course, this is far from true. For ex-
ample, it is hard to prevent the subjects {from making a distinc-
tion between plays in which they gain and plays in which they
lose. Thus the graph of utility against chips won might look like
the graph in Fig, 2,

It is very difficult to judge whether phenomena such as this
were significant. It was noticeable, however, that some players
had a convex utility function which expressed itself in a desire
to randomize, while others did not like to randomize, Tt the last
play of Game 3, for example, all four players randomized to see
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which three-person coalition would form. One player objected
strenacusly to this procedure on the grounds that it would be un-
fair to the player who was left out. She was forced to comply,
however, by the threat of a three-person coalition against her.

Utility
7 ’\\\
.’,_/—"“ PR o

N\

—t— Ch‘iés won
2 5

| | Il l
3 2.1 0 1 2
Fig. 2 ?)

3. Compatibility with the Shapley Value[2). The Shapley
values for different positions are comp&?}d with !:he average ob-
served outcomes in Fig. 3. More detdil d numerical data will
be found in charts 2-7. There seemg)to be a reasonably good
fit between the observed data %q“\,?{m,“é% “Shapley‘value! conmder%ng
the small number of plays which are b%‘iké’fﬁm@m There is,
however, a tendency for thetactual outcome to be more extreme
than the Shapley value, Fhis is especially noticeable in Game 1,
Apparently this is du%»ts the fact that coalitions with larg.e pay-
offs were much mere yikely to form, Thus the players.mth rela-
tively high Shapley values were rewarded not only by high payoffs
when they got dnte coalitions but also by a strong tendency to be
in coalitions{ Mh Game 2 and in the five-person game, .where
there wengl‘;\ﬁo players whose Shapley values were notlr_:eably
high, t \second highest player did just as well as the first. (See

the diScussion in Section 2.)

~ A, Compatibility with Strategic Equivalence [4]. If graphs
\aﬁal‘)gOUS to Fig. 3 are constructed showing the a}verage out-
comes for these games after transforming thf:m into some nor-
malized form by strategic equivalence, We might expect that
strategically equivalent games (1 and 4; 2’ and 3! sll10ul‘d show
fairly close agreement; also the symmetries existing in the
games (A and C are symmetric In Game 1; all' players are sym-
metric in Game 3; B, C, D, E are symmetric in Game 5) might
be expected to be reflected in such graphs. The act_ual re*lsult?.
don’t agree very well with these hypotheses. The discussion in
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COMPATIBILITY OF SHAPLEY VALUK WITH ORSZRVED CUTCGMID
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Game 3
(Symmetrical)

— e fverage Outcome
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Fig. 3 (cont.)
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Flve—par=os Game

(Etrategleslly Equivalent o Cawe
whieh is Symmetrical amons Players
B, ¢, D, and =}

— % LVETAge Jutcome For 3 Flans

————— = Shapley Value

R ———

Fig. 3 (concluded)
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Seciian 2 hints at some possible reasons for this discrepancy.
Thus, the fact that coalitions with high characteristic function
ave raost likely to form, the tendency of members of a coalition
to splil evenly, and the non-linearity of the utility function all
tend to disrupt the concept of strategic equivalence.

5, Compatibility with von Neumann-Morgenstern Solutions [4],
It is extremely difficult fo tell whether or not the observed re-
suits corroborate the von Neumann-Morgenstern theory [4), {This
is partiy so because it is not quite clear what the theory assprts.
According to one interpretation a “solution” representséistable
social structure of the players. In order to test this theory ade-
quately, it would probably be necessary to keep repeaj:ing a game,
wiik a fixed set of players, until there seemed to7be some sta-
bility in the set of outcomes which occurred, O‘nf? could then see
to what extent the outcomes of this final sebdominate each other
and to what extent other possible imputg.t@ns are not dominated
by them, \ 4

This suggests that we find out to,what extent the observed (E)ut-
comes for each game dominate each/other. This is nc!t too fair
a test of the theory, but not mugh® aﬁ]r? Gap be done with the

available data. The following! are all the sigliFidafit Hominations

{denoted by >>) which occufbetween the eight observ_'ed outcomes
for each of the four-pexrSeon games. Dominations which occur be-
cause of a difference-gf one chip or so are ignored.

R
Game 1, 2, 6, 7>3,
345 1

L 551,2,8,4,6,7, 8

\..
Gamé.2, 13>2,4;3>1,7, 8

O 43,55 74LT
A 6>1,77>1,2,4
8 1,2, 6.

Game 3. 3>1,5,7,8; 4> 3.

Game 4, 2, 3,8 > 6;
6 >>1;3 >2.

Thus for Game 2, so many dominations occur that the set of
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outcomes cannot be related to any solution, For Game 1 there
is some hope, since outcomes 2, 4, 6, 7 and 8 do not dominate
each other,

For Game 3, the situation is quite satisfactory. Outcomes 1,
2,4,5, 6,7, and 8 do not dominate each other, and furthermore
they are clearly related to a familiar solution to this game:
namely, the solution consisting of (10, 10, 0, -20) and its permu=-
tations together with (0, 0, 0, 0), The other point, 3, also beloags
to a familiar solution: that consisting of (6 2/3, 6 2/3, 6 2/%
-20), (6 2/3, 6 2/3, -6 2/3, -6 2/3} and their permutationsi )
These results are more or less explained by the symmetey Gf
the game, so it is not clear that they are significant, \ ."

For Game 4, the outcomes 1, 3, 4, 5, 7 and 8 dohotidominate
each other. It would be necessary to try extendingithis set to a
solution in order fo test the significance of thi¥ Sesult.

In another interpretation of the theory, a\solution represents
a collection of outcomes under consideration by the players at
some state of the bargaining procedurq;\l"hus, & solution refers
to a single play of a game rather thagm\a¥aumber of plays. It is
very difficult to tell just what cutcomes were under considera-
tion by the players at any particular time, What was actually ob-
served was a number 6{ 6HETSIAAAY b4 Rntially, Frequently
each offer dominated the immediately preceding offer. A more
thorough study of the datalweuld be necessary, however, actually
to refute this interpretation.

An example of a ée(se where such an interpretation did seem
reasonable is givemby the following, In one play of a four~
person game, a Qba:lition of two was formed, but the agreement
was made in sich a way that the coalition could not be expanded.
This left the other two players with a pure bargaining situation.
Actually they chose to split evenly, rather than go through the
ordeal Of bargaining. If they had bargained, however, the set of
possible outcomes would have formed part of a Shapley quota-
type.solution [3],

6. Compatibility with “Reagonable Qutcomes®, The foliowing
definitions, due to J, W, Milnor, establish several bounds for the
amounts which a player i or a set of players 8 should get in any
play of an n-person game. In particular, upper bounds b(i) and
b(S) are defined by the following: '

b{i) = Max (v(8) - v(§ - 1)),
ies
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h(S) = Max (v(8") - v(8' - ).
8 >8
A thecretical plausibility consideration for these definitions is
given by the fact that one would not expect a player ito exact
more from a coalition S of which he is part than his presence

contributes to it, i.e., v{S} - v{S - i} should be as much as he
could reasonably expect as his share. The set B of imputations

o= {ai}(’xi Sb{i)) is a rather large set - for example, in thes

normalized zero-sum essential three-person game (see’[4~ +B
eguals the set of all imputations, It can be proved that.B dlways
contains the Shapley value (see [2]), and also every golution in
the sense of von Neumann and Morgenstern (see [4])% Section 7
contains ecomparisons between bii), and the actaalbutcomes, It
appcars that b(i) is usually compatible with the)dutcomes, in
particular in the case of the four-person games (a deviation in
one of the cases was subsequently relatéd to the statement made
by one of the subjects after the experimént was over that he had
made a mistake in reasoning). The\dgreement 15 less favorable
in the case of the five-person gaie - some players getting more
than their “maximum share®® lyw'ﬂb(’:'ﬂi':\mi@iﬁlﬁ?@-ivhich may be
related to the fact that the players rushed into coalitions, split-
ting the payoff evenly, without really studying the strategic pos-
sibilities. RS

A lower bound, §&)} was also defined for the payoff to each
coalition, Its dqfi}ﬁ ion is the following:

(8} = Mm(v(\si J + v(5 -81)); L= all imputations &= {ai}(_E ai [(s&
SI'C §'~ ieS

Itis, ri&'hard to see that U(8) = v(D) - b(I - §) in the constant sum
cagel- which makes A(S) a plausible candidate for a lower bound.
X is possible to show that under rather strong assumptions (viz.,
argaining will always result in the formation of just two oppos-
ing coalitions; in order for a coalition T to form it must distrib=
ute its payoff v(T) among its members in a way which is “stable”
in the sense that every subset Ty of T is given at least v(T1))
the outcome of a play must lie in L; av. Neumann-Morgenstern
solution [4] may fail to be contained in L, nor need L. contain
the Shapley value [2] of the game. The sixth game (a seven-
person game) was an example of a game for which there exists
a v. Neumann-Morgenstern solution giving to a set 8 less than
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4S) ~ the quota solutions of this game contain outcomes such as
(-40,40,0,0,0,0,0) giving some five-person sets -40 wheress
(8) = -20 for all five-person sets, It turned out that the actual
minimum outcomes for five-person sets S were in 11 instances
Substantially higher and in one instance equal to {(S). An out-
come (payoff) falling within the limits defined above is called a
“reasonable outcome”,

N\

7. Numerical Data, The actual outcomes from these gamen
are given in the following tables. Expected outcomes ares&iven
In the few cases where the players randomized. Game 45 a
constant-sum game with v(I) = 80, The others are allizero-sum
{the characteristic functions are given in Section L}

The commitments listed in the last column indlude only for-
mal agreements processed through the umping,’ Many
information agreements were made and kept,\ The numbers
b(S) and the Shapley value are to be constred in the light of
Bections 3 and 6 above, N\

N\ 3
AN

I. EXPERIMENTAL WORK WITH NEGOTIATION MODE LS

W ahTarr ey rere st
1

A negotiation model ig a,nbnlcooperative game [1] which is
based on a strictly formalzad negotiation procedure applied to
2 Cooperative game, In{principle such a model can be studied
and analyzed in term#®.0f equilibrium point theory [3] as a non-
cooperative game,@nd the kind of solution thus obtained may
then be consideréd;as a possible solution of the underlying coop-
erative game,, One of the aims of the experiments related in this
paper is to’g‘}g}in information on the workability of the model.

ActuaJ,Q(;we use the phrase “negotiation model® somewhat
more broadly than is implied above, The model, as a non-
cooperative game, may not have anything like a really satisfac-
tory non-cooperative solution. It may only be an intermediate
model which would have to be further modified {perhaps by put-
ting in preceding commitment moves) before anything very satis-
factory for a theoretical solution would be obtained. Some such
modification may show up if the game is actually played by the
Subjects. Another possibie aim of experimentation may be to ob-
serve the effects of repeated playing of the same game by the
same set of players, This may make the {negotiation) game
more cooperative because information can then be transmitted
and inferred by the history of the previous plays; precedents can




31

SOME EXPERIMENTAL n-PERSCN GAMES

g MEYD
g v g g z g 9 9 g 9 UoNIROD
o jo yred sem
s\\ § souwIt] J0 “ON
887,00 L'9F £'€8 _0F L9V | £'€T 0C 19T 0% anreA Aordeny
e & 0b 09 09 09 ma
0°0g ﬂ.@m.w.wm 242 w.mm 070G 9'6 €02 ¥'¥8 9°61 jjofed aBesoay
. 7, 5
aqav ‘av 8 oBF o8 m\.\m v 3ce il & 0 ¢cggsg | 8
oav ‘od og  g¢ g9 m % 0G 0 0 e S1 | L
agay gt 9% ¥e mfuw e 89 3L 0 ¥e ¥E | 9
an ‘av 0z 08 05 0g /Pg 09 0F 0T 0% 0% | ¢
ogy ‘0d ¢ ¢ 0L O ¥ , gF 0 & 6§ oI ¥
av ‘odg 0F 0y 08 02 OF by 0T 0¢ 08 OI g
aod ‘od 9% 9% 89 2T b VES | 2T ¥E ¥E O g
aond ‘an 8k 95 9 ¥2 ¥ ¢ ‘Mg ¥ 2z 0 1 Tagunu
7 una ur jofed
APEJ $UITIUOD «\
10 SUGTIIEOD) gy ag o4 av OV 49V a 4,49 v § sxeke[d jo 108

{y awrny 0] Juareanbd A[(gordarengy 7

1 HNVD HOJd VIVJ

7

N

/

/20N




DECISION PROCESSES

318

! e T e e z g 5 8 g g uotyIE0D |
P 1o 1red sem
: £ 3 .
. | § seuIy 3o “oN
010 0s 05~ 0 01 0€- 02 08 0Z-| oneA Asdeyg
! O 0I- 0F 0% 0 (q
VN
$'b- 9'8- UVBS 165~ 9'8  SL | 9°48- T'0E 0°6F GIg-| Ijoked eSeieay
725
‘ & £ 4. - ) -
and ‘oa | g 9 898975 9 9 8z- ¥¢  ¥e  oF- |8 J
asd | z- 1- €8 7487 1 4 €= 1% ¥ 0F- | L
avod |- u- o 0s 0e%E s L g~ 9% 62 8I- |9
av ‘od | z- z- 08 0s-5 %, 2 L2- %% %8 £2- ¢
o 7
odv SI-  ¢T- 0L 08-2 ¢t /, o1 0%- 6¢ S8 02-| P
v \ \s./
od ‘av 0 0 05 06-% 0 W, 8- S¢  Ss¢  Sg-(¢
o8V ‘D8 | e~ be- 8¢ gs- e ¥ 0% 08 98 z- |g
og°'avy | 91-  9z- 05 0%- 9z 9T | C¥R- 08 02 - |1 ISqUINU
(& UNJI Ut JJoAnd
NG !
PPEIN SUBULIEWO] QO
osuwoniee)y | @0 ad o Qv OV 4av | (r,8 v |ss1obeid jo jeg

(owren 1RorToWMIAS 0) JUaTEAIND R A1edrderens) x\

~

N

/

4

e

& HWVD Hod vIVd



319

SOME EXPERIMENTAL n-PERSON GAMES

().c g v Z g g L L 8 9 UOT3ITe0D
A\ 30 1aed sem
ﬁ.\“.\\/ g sawgy jo *ON
0™ e 0 o _o 0 0O 0 o0 o anrep £odeug
Y 5 0z 0Z 02 02 (1) q
o g
20- T's Y% 6e- wm- Al 0 2'0- T't 6%- | Hoded ofersay
758 =
anav | o 0 0C 0 3o 0 o o 0 o |8
L3
av ‘agp | o 0 0 04 50 0 6 0 0o 0 |
aog ‘ad | 1T 8T YT TI4ZE8I- 11-| 6 % 6  0z-|9
aaov| o o o o A, o | 0o o 0 o |g
agv ‘av | 61- 01 11~ 11 of 6l I 0%- 6 O |¥
oHV | gI-  ¥I- &L €I- Wi \»ww 0z- L 9 L |¢g
ag‘ad | 61 1L o1 or- TI- 6T o1 6 1T 0E-ie
as‘av | o 0 0 0 0 o Mo, 0o o o |1 RET
“Z) unx ut jyofed
..o\os
ApUW SIOWTIW o) O
wsuwomeod | gD ad o AV OV 4v | 4 /,d V¥ | s szedeld 1o g
I . h ;A.._mow.ﬁaEE.amw i

£ HNVD HOd V1IVA



DECISION PROCESSES

320

g 1IBYD)

r 7, & € L g £ 3 g g L uo1ITe0D
AN Jo 1aed sem
% N § sawmn 10 "oN
0T- @ 0f- 0T 0 07 o 0I- 0  0f anfeA Aa1deys
YO 0¥ 05 0§ 0L (Wa
e
°6-  L'T- ﬁ 9I- T'ST L7 1°6 '8 E'11-6°¢- Ol | Joded adessay
\
» m
anv | % gg- om,s\ 0¢ % 92 gg- | ¢r ©O1 0¥~ ST |®
{ 1
aav ‘av ;| 0¢- ST ¢1- .mw S 8I- 09 0T- 0¥~ ¢S 62 |L
av ‘of | o 0 o1 S.l.mw..o 0 G- & 5 g g
&9,
agv ‘av | 8y- 91 91- 91 T8,  8¥ 8- 0b- ¥ BB | G
ady ‘av 05- ST ¢I- ST B SI-, & GI- OF- CZ G2 | ¥
3 \,

anyv ‘ov e 0g-  S2- 62 2 0% m -| 0T ST  OF- ST |¢

aodg ‘od 01 01 02 0z-  0OI- 2\ . 0 0T 01 02-|2
any g1 SE- 06~ 08 g1 oI- | 09%. 01- O0b- ST | 1T Joquun
g “\ . ung ut jjoied

IPEIN SIUAWIIWIIOY) i ()
J0 SUOTII[ROD an adg od av v av a NW\\ d v * § s1edeld 10 198
(1 ewren o3 Juateanby L1TE0139718.038) ‘\ N
o

¥ HNVD HOd VLVd

o

/




321

“OME EXPERIMENTAL n-PERSON GAMES

L WEUD

DiV
YHADE D4 aq ‘AD v - £8 £ g g g g 9% - 2
. pdaadd )
0JHda ind ‘9d ‘od iy L L L 9 9 op- 1 Iagunu und ut Joied
SPEI SIUSWITUITIOT) s -
10 SUOTIITEOD n Yea o da ) q v 1 104e1d
YO (orn3umAg)
) 4 by
msﬁwﬁoﬁmﬁw@ém OERAR 4
V9 Eew
2 g A M ¢ Z UOTJIROD JO I3
% .,.w SEM 1 SaWiT} J0 "ON
-
g- G1- o S 0 anfep Aordeus
7
01 0 og /, 0% 0¥ na
| | et o1- L LAl 06- | j04rd oFeIaAV |
| maom ‘ang od | 01 o1 0z 0% 09- £
i 704V ‘0dv 81~ 0%- £T gg ), €2 4
05- ot 0T ot \x\,2 1 I9guWInu Uni ut Jjoked
o} a . a \A.‘... 1 3afe1d

. - . . u\ .
(‘g ‘D ‘g Usam)aq OTIIPWWAS JWES 0] aeamba m:mu%m\ﬁmbmu

HNVH NOSUAd-RALL YO VIV

\V 4




322 DECISICN PROCESSES

be established; players may convince others that they will con~
tinue to behave in certain ways in future games (for instance, by
a persistent use of a certain strategy).

We performed experiments on a three-person model and on a
four-person model, In both cases the piayers’ communication
with each other was strictly formalized and was effected through
the umpire,

In the three-person game the players were blindfolded and g -
dicated their moves to the umpire by means of hand signale,\In
the four-person games each player sat where he was unabl]aio
See any of the other players (of whose identities he wagwhaware)
and made his moves by writing them on paper G\

The rules of the three-person game were as follbws:

First move: Player A may either (1) wait orQ{z)'make an of-
fer to form a coalition with either player B or\C; this offer is to
specify the share d p of the proceeds of the ,Emposed coalition
which A intends to obtain for himself (d #Et€., must be integers).
Players B and C make similar first mp%é——and all three make
their moves simultanecusly and indegerdently,

U twe players, say A and B, have made offers to each other,
and if dg + dp < 15, the game isj_"over and the payoffs are the fol-
lowing: A gets dy, B gete'drRlibEps Y @IEL). 1 g, + dg > 15,
all three get zerg, S

U a coalition was forn@d, the play is over, and all three play-

ers get zero, O

I, say, A has ‘waited” at his first move and was offered a co-
alition by another Player, he has a second move where he may
either choose toldecept or to reject. In either case, the play is
over. The payoffs in the first case are (if A accepts B’s offer):
A gets 15 -.d@, B gets dp, C gets -15. In the second case all
three plaiéré get zero,

This game has been treated theoretically. Let us change the
normalization, so that a coalition gets +1, the outsider 0. A de-
ma::ld can be any real number between 0 and 1, and the payoff is
143, 1/3, 1/3 when no coalition forms. If the above-~described
game were changed by disaliowing demands greater than 1/2, the
new game would have a symmetric equilibrium point where each
player offers with probability .544, with probability .456, and dis~
tributes his demands between ,415 and 500, the average demand
being (455,

The observed behavior of the players corresponds fairly
closely to this strategy; 85 per cent of the demands were within
the thearetical range. Waiting was somewhat neglected, occur-
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ring only 33 per cent instead of the theoretical 41 per cent. The
theoretical strategies are not quite at equilibrium in the game
with unrestricted demands, for the demand of 2/3 - € would be a
strategy with an expected payoif of about .34, a little more than
1/3, which is the expectation for demands in the lower range.

Of course, such high demands would not be advantageous against
the aclual play pattern in the experiment; waiting was not fre-
quent enough.

The true non-pathological equilibrium point for this game Q
seems to be the same as for the game in which only coalitions
formed by one player offering and the other player waiting and
accepting are allowed. Here the offering probability, is.only 42
per cent, and demands start at .53 and run up to 2/35with most
of the weight of the distribution at the low end. .'Iihis distribution
is completely non-overiapping with the distrilution described
hefore,

The four-person games were derived&iy.‘formalizing the nego-
tiation from two of the cooperative games which were investigat-
ed in the part of cur experiment devoted to free bargaining
(namely games 3 and 4). Again all'players moved simultaneous-
ly and independently at each stage, all players being informed,
after each move, of the choi¢es madedayi (hergtBeESn There were
two kinds of moves; one im which offers may be made, and one

in Wwhich offers made inithe move immediately preceding may be
accepted by a player(who had passed--
ceding move.
gleaned from thé\presentation

\/ Example

») (This is based on Game 4)

“waited? during that pre-

A move detailed description can perhaps best be
of a sample play of the game.

This is the first move. Here each player has
ber under the letter

made a proposal. The num
of a player indicates his demand, the set of let-

ters the proposed coalition. No potential coali-
tion has the property that all its members have
either named it or waited. If all had named %t
and had made mutually compatible demands it
would have been formed at this first move.
Once formed, coalitions are permanent unless

enlarged.
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Player ‘ A J B ’ C ‘ D
Proposal | Wait ABD ABC ‘ nc
6 ] 0

This is the second move. Since no coalition can
arise from the first move, the second move pro-
ceeds again afresh, except for the information
from Move 1. Still no coalition can form.

)

Player [ A ’ B ‘ C ' b, \

Proposal | Wait ‘ ABD ’ Wait l ’Waﬁ
6 ’ }‘

This third move makes it possiblefor ABD to
form and an acceptance move is diserted in the
game, In the acceptance me¥e)each of the play-
ers involved, A and D in thiskcase, can reject or
accept the proposed coalition, Acceptance must
be associated with a demand for a certain pay-

o o O e

off, and is conditio ral on ob@éim‘%g the amount

demanded, ~

Acceptange\hove :

Plaste’ | A | B ’ c | b

Pidposal | ABD No No ABD

\\ 8 Move Move 7
o "  Now A and D have made their acceptance pro-
\J posals. The coalition ABD is successfully

formed because 20 points are available to ABD
and only 6+6+7=19 have been spoken for. The
play is over now because the coalition formation
is complete. (Since we were working with zero-
sum games we excluded the coalition of all four
players.) A, B, and D are paid their demands,

6, 6, and 7 respectively. C receives -19 to make
the game zero~-sum.
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There are not many data from this part of the experiment,
but it showed that the model was workable, The number of
moves per game decreased as the players learned better strate-
gies than they began with. Afterwards, the subjects reported
that they enjoyed this part of the experiment more than any other
because it didn’t invelve the exhausting face-to-face haggling.

Thus further experiment with negotiation models may well be
proiitable,

Q!

. A _S_’EOOGE GAME o

The “stooge game” was a zero-sum three-persofi game with
{infegral valued) side payments. Each play proceeded as follows
At the end of four minutes, or when the piayers peported agree-
ment to the observer (whichever was the ear}ier), the following
payoifs were made: if no coalition was ;oﬁned each player got
0: if a coalition was formed (the formatiotof 2 coalition implied
an agreement on how to split its proveeds), it received 10 chips
from the odd player. A coalitionkas permitted to make a pay-
ment to the odd player (this, hoﬁfev'er, was never done). There
were three runs of five plays}'é‘é\‘fh’--dmmlsb@egy_mgimstructions
to offer a 7 - 3 split to one or the other of the two subjects in the
majority of cases, thre€ o himself and seven to the other player.

During the first, rafn, the stooge had difficulties establishing
himself, since the game proceeded very rapidly and was over in
a matter of mmutfes or even less. During the second run, the
stooge did maiage every time to get a 7 - 3 split and during the
third run, the-Subjects “caught on® and the 7 - 3 split offered by
the stoagevtcurred only twice (once it occurred between the
two subljects).

Insspite of occasional statements made by the subj ects that
Aley wanted to play the game non-competitively, the stooge’s be-
{hivior caused a very competitive atmosphere and there.was
Sharp and intense bargaining all the time. Two tendencies that
could be observed were that first coalitions often persisted, and
that tentative coalitions formed almost at once. In general, the

plays proceeded very rapidly.
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One of the purposes of this experiment was to see if a com-
petitive atmosphere could be induced by a stooge--and, as ex-
pecied, this was possible. Another purpose was to see if von
Neumann~Morgenstern’s discriminatory solution of a three-
person game (see [4]) could be established, This definitely was
not achieved in this experiment,

N\
IV. A THREE-PERSON COQOPERATIVE GAME \
WITH NO SIDE PAYMENTS N9

"N\

In an effort to get some ideas about the proper theony for
games without side payments, the following three-gerson game
was played. Each player was given two playing eards, each rep-
resenting one of his opponents, A player moved. by placing one
of his cards face down on the table, thus “vgtidg” for one of hig
opponents, If some player got two votes,dlen he was awarded
40 chips and each of the other two was.penalized 20 chips, If
each player got only one vote, then thére was no transfer of
chips. The actual play was preced@d by a bargaining period dur-
ing which the players couid makeany. r commitments they
wished subject only fo %%“%(ﬁﬁ?hﬁ&&%igﬁictions: (1) there
must be no side payments inyolved, and (2) the deal or commit-
ment must refer only to thé individual play of the game under
consideration. There ware three runs of four, each run involv-
ing a new set of pla}:g}s.

The results of thjg experimen{ were rather negative, The
players were simply unwilling to play competitively, In two of
the three rungythe players equalized the expectations either by
playing randomly or by rotating the winning player over three
plays, vj;gting prescription (2}, In the other run some of the
plays We’re still random although there was a tentative deal of
the form “if you vote for me I will vote for you,” and a threat of
the form “unless you vote for me I will vote for him.” It is of
course extremely difficult to bargain effectively in this game,
but it had been hoped that some more positive result would be
attained,

The following suggestions may be made in case experiments
of this type are carried on in the future, It would be better to
play an unsymmetrical game so that there would be no obviously
fair method of arbitrating the game and avoiding competition,
The same set of players should not be together repeatedly since
there is too much of a tendency to regard a run of plays as a
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single play of a more complicated game, A competitive attitude
should be fostered by proper and more thorough indoctrination or
otherwise; possibly the proper use of stooges may induce a more
competitive mode of behavior {see “Stooge Game®).
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APPENDIX A

University of Michigan Summer Seminar at Santa Monica, California
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Ahraham Kaplan
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John L. Kennedy
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Oskar Morgengterh
Frederick Mpstéller
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A, New%s"

Roy Radner
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Gerald Thompson
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Robert Wollson
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University of Chicago.\, "
RAND Corporation ) \,J
University of Chicagp
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RAND Corporation
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RAND Corporation
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University of Minnesota
RAND Corporation
University of Chicago
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RAND Corporation
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APPENDIX B

Michigan Project - Summer Seminar

List of Papers Presented

Norman Dalkey - Cooperative Aggregation

C. H. Coombs, H. Raiffa, and R, M. Thrall - Some Views on s
Mathematical Models and Measurement Theory

Clyde H., Coombs - The Measurement of Social Utility .\f\

Douglas Lawrence - The Determination of AlternativeSym a
Choice Situation A\

Leon Festinger - Some Remarks on the Relationship‘between
Mathematics and Social Psychology ¢

Clifford Hildreth - Alternative Conditions for.Social Orderings

Allen Newell - Experimental Study of Orgamizations

Robert J. Wolfson - Notes on Methodolog

John Kennedy - Experiments in Social Sciences

Robert R. Bush - The Acquisition ‘ol Preferences

G. L. Thompson - A Simplified Bridge Game

Roy Radner - An Example of Wi btz Dereisjos Making Under
Uncertainty N

Merrill M. Flood - Regport on Some Experimental Games

Abraham Kaplan - Bh?losophical Theory of Value

John Milnor - Gdirles”Against Nature

Evar Nering - Sclutions of n-Person Games

John Nash - N-Person Games and the Need for a Better Theo-

retical Basis

w. K. Es;ta\nc»"- Theory and Experiments Concerning Individual
Begévior in Uncertain Situations

Paul‘Kecskemeti - Science and Policy

LS. Shapley - Stable Sets in the Theory of Games
action

ent and Computation in Economics

Oskar Morgenstern - Experim Scon
ks on Teams and Qrganizations

Jacob Marschak - Some Remar )
James T. Culbertson - Neuroeconomy in Hypothetical Robots

Robert Chapman - Experimental Study of Organizations
Gerhard Kalisch - Remarks on n-Person Games
John von Neumann - Remarks on Chess-playing Automata
Robert R. Bush and G. L, Thompson = General Stochastic Model
Leo Goodman - Methods of Amalgamation
Roy Radner and Abraham Kaplan - Questionna

Probability

331
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W. K. Estes, R. J. Wolison, and Roy Radner - Group and Indi-
vidual Prediction

G. L. Thompson - Trapping Theorems

R. R. Bush - Estimation of Model Parameters

Festinger, Lawrence, Kalisch, and Nering - An Experiment cn
Coalitions

Kalisch, Marschak, Wagner, Fulkerson, and Estes - Experlmextq
on Bargaining and Game Theory

Sam Karlin - Mathematical Aspects of the Learning Modak\\
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